21 resultados para Ore-dressing plants
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
An analysis is carried out in a sample of 738 industrial plants of the determining factors in the use of internal promotion of blue-collar workers to middle managers and skilled technicians as against their external recruitment. The use of internal promotion is positively correlated with variables indicative of the efforts made by plants to measure employees' skills, and to a lesser extent, with the level of specificity of investments in human capital made by blue-collar workers. Contrary to what was expected, variables related with the use and efficiency of other incentive systems have no significant influence on the increased or decreased use of internal promotion. These results are initial evidence that internal promotions are used to protect and favour specific investments, especially those made by firms in order to discover their workers' skills.
Resumo:
The plant cell wall is a strong fibrillar network that gives each cell its stable shape. It is constituted by a network of cellulose microfibrils embedded in a matrix of polysaccharides, such as xyloglucans. To enlarge, cells selectively loosen this network. Moreover, there is a pectin-rich intercellular material, the middle lamella, cementing together the walls of adjacent plant cells. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of enzymes involved in the reorganisation of the cellulose-xyloglucan framework by catalysing cleavage and re-ligation of the xyloglucan chains in the plant cell wall, and are considered cell wall loosening agents. In the laboratory, it has been isolated and characterised a XTH gene, ZmXTH1, from an elongation root cDNA library of maize. To address the cellular function of ZmXTH1, transgenic Arabidopsis thaliana plants over-expressing ZmXTH1 (under the control of the CaMV35S promoter) were generated. The aim of the work performed was therefore the characterisation of these transgenic plants at the ultrastructural level, by transmission electron microscopy (TEM).The detailed cellular phenotype of transgenic plants was investigated by comparing ultra-thin transverse sections of basal stem of 5-weeks old plants of wild type (Col 0) and 35S-ZmXTH1 Arabidopsis plants. Transgenic plants show modifications in the cell walls, particularly a thicker middle lamella layer with respect the wild type plants, supporting the idea that the overexpression of ZmXTH1 could imply a pronounced wall-loosening. In sum, the work carried out reinforces the idea that ZmXTH1 is involved in the cell wall loosening process in maize.
Resumo:
The aim of this book is to survey on different Land Use Planning and safety approaches in vicinity of industrial plants. As this research is associated with three broad fields of Land Use Planning, safety and security, the set principle is to avoid unnecessary and over detailed information, but including the useful ones to provide a comprehensive resource which can be applicable for several purposes. Besides, the proposed method, which is explained in Chapter 7, can initiate a new field for future of Land Use Planning in vicinity of industrial plants.
Resumo:
L’objectiu principal és presentar un nou prototipus d’eina per al disseny de les plantes de tractament d’aigües residuals utilitzant models mecànics dinàmics quantificant la incertesa
Resumo:
German accounting rules value assets and liabilities asymmetricallyand thus lead to grossly distorted balance sheets. In the interwardebate on a reform of disclosure regulation, financial expertsconsidered the (undisclosed) tax balance sheet, which had to bedrawn up separately for the corporate tax assessment, as a paradigmfor adequate financial disclosure. However, due to tax secrecy thaywere barred from analyzing tax documents. Using archival evidence,we analyze tax balance sheets from which the reliability of disclosedbalance sheets of the interwar period can be assessed. It emergesthat companies overstated their profits in the middand late 1920s,but grossly understated them in the Nazi economy.
Resumo:
The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that qualitative information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (bulking episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelationbetween variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics
Resumo:
This paper presents a case study that explores the advantages that can be derived from the use of a design support system during the design of wastewater treatment plants (WWTP). With this objective in mind a simplified but plausible WWTP design case study has been generated with KBDS, a computer-based support system that maintains a historical record of the design process. The study shows how, by employing such a historical record, it is possible to: (1) rank different design proposals responding to a design problem; (2) study the influence of changing the weight of the arguments used in the selection of the most adequate proposal; (3) take advantage of keywords to assist the designer in the search of specific items within the historical records; (4) evaluate automatically thecompliance of alternative design proposals with respect to the design objectives; (5) verify the validity of previous decisions after the modification of the current constraints or specifications; (6) re-use the design records when upgrading an existing WWTP or when designing similar facilities; (7) generate documentation of the decision making process; and (8) associate a variety of documents as annotations to any component in the design history. The paper also shows one possible future role of design support systems as they outgrow their current reactive role as repositories of historical information and start to proactively support the generation of new knowledge during the design process
Resumo:
Many mineralizations, showings and geochemical anomalies have been found in the Hercynian of the Catalonian Coastal Ranges during the last ten years. Many of them are enclosed in the Paleozoic sediments and volcanics and display pre-metamorphic syngenetic characteristics. The lower carboniferous manganese and base meta1 deposits appear to be formed from hydrothermal fluids springing up in the sea floor through active fractures controlling the filling of the basins in a extensional geotectonic setting. Although less evidence and more controversy is available, similar ore forming processes could have taken place in older Paleozoic times. The deformation and metamorphism have not played an important remobilization role, and most epigenetic deposits of Hercynian age are related to the hydrothermal cells induced by the post-metamorphic granitic intrusives.
Resumo:
Palaeobotany applied to freshwater plants is an emerging field of palaeontology. Hydrophytic plants reveal evolutionary trends of their own, clearly distinct from those of the terrestrial and marine flora. During the Precambrian, two groups stand out in the fossil record of freshwater plants: the Cyanobacteria (stromatolites) in benthic environments and the prasinophytes (leiosphaeridian acritarchs) in transitional planktonic environments. During the Palaeozoic, green algae (Chlorococcales, Zygnematales, charophytes and some extinct groups) radiated and developed the widest range of morphostructural patterns known for these groups. Between the Permian and Early Cretaceous, charophytes dominated macrophytic associations, with the consequence that over tens of millions of years, freshwater flora bypassed the dominance of vascular plants on land. During the Early Cretaceous, global extension of the freshwater environments is associated with diversification of the flora, including new charophyte families and the appearance of aquatic angiosperms and ferns for the first time. Mesozoic planktonic assemblages retained their ancestral composition that was dominated by coenobial Chlorococcales, until the appearance of freshwater dinoflagellates in the Early Cretaceous. In the Late Cretaceous, freshwater angiosperms dominated almost all macrophytic communities worldwide. The Tertiary was characterised by the diversification of additional angiosperm and aquatic fern lineages, which resulted in the first differentiation of aquatic plant biogeoprovinces. Phytoplankton also diversified during the Eocene with the development of freshwater diatoms and chrysophytes. Diatoms, which were exclusively marine during tens of millions of years, were dominant over the Chlorococcales during Neogene and in later assemblages. During the Quaternary, aquatic plant communities suffered from the effects of eutrophication, paludification and acidification, which were the result of the combined impact of glaciation and anthropogenic disturbance.
Resumo:
Due to the increase of the incidence of fungal infections in humans and the limitations of the available antimycotic drugs, among which the emergence of resistant strains, there is a need for the discovery of new antifungal agents. Plants, especially those used in Traditional Medicine, linked to an unmatched chemical diversity, either as pure compounds or as plant extracts, provide unlimited opportunities for the development of new antifungals. Inrecent years, compounds from different phytochemical groups have been described as having antifungal activity, including polyphenols, saponins, or peptides, among others, as well asessential oils and their constituents. After screening of ethnopharmacologically selected plants, mainly from Latin-America, followed by bio-guided isolation, our group hasdescribed the antifungal activity of different types of plant constituents, such as sesquiterpenes, triterpenes, flavonoids, lignans, fatty acids and essential oils.
Resumo:
As a constituent of selenoproteins, selenium (Se) is considered an essential element for human health.The main way that Se enters the body is via the consumption of vegetables, whose concentration of thiselement depends on soil Se content. We grew cabbage, lettuce, chard and parsley, in peat enriched in Seby means of the additive Selcote Ultra®and Na2SeO3and Na2SeO4. Total Se in plants was determinedby acidic digestion and Se speciation by an enzymatic extraction. Both were measured by ICP/MS. Theconcentration ranges were between 0.1 mg Se kg−1and 30 mg Se kg−1for plants grown in Selcote Ultra®media, and between 0.4 mg Se kg−1and 1606 mg Se kg−1for those grown in peat enriched with Se sodiumsalts. We found Se (IV), Se (VI) and SeMet in all the extracts. Peat fortified with Selcote Ultra®gave slightlyhigher Se concentration than natural content values. For plants grown with selenium sodium salts, Secontent increases with the Se added and part of the inorganic Se was converted mainly to SeMet. A highSe fortification can damage or inhibit plant growth. Cabbage showed the greatest tolerance to Se.
Resumo:
Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.
Resumo:
This work focuses on the prediction of the two main nitrogenous variables that describe the water quality at the effluent of a Wastewater Treatment Plant. We have developed two kind of Neural Networks architectures based on considering only one output or, in the other hand, the usual five effluent variables that define the water quality: suspended solids, biochemical organic matter, chemical organic matter, total nitrogen and total Kjedhal nitrogen. Two learning techniques based on a classical adaptative gradient and a Kalman filter have been implemented. In order to try to improve generalization and performance we have selected variables by means genetic algorithms and fuzzy systems. The training, testing and validation sets show that the final networks are able to learn enough well the simulated available data specially for the total nitrogen
Resumo:
This article presents an optimization methodology of batch production processes assembled by shared resources which rely on a mapping of state-events into time-events allowing in this way the straightforward use of a well consolidated scheduling policies developed for manufacturing systems. A technique to generate the timed Petri net representation from a continuous dynamic representation (Differential-Algebraic Equations systems (DAEs)) of the production system is presented together with the main characteristics of a Petri nets-based tool implemented for optimization purposes. This paper describes also how the implemented tool generates the coverability tree and how it can be pruned by a general purpose heuristic. An example of a distillation process with two shared batch resources is used to illustrate the optimization methodology proposed.