8 resultados para OpenMP

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudi comparatiu amb benchmark del rendiment en dues plataformes multicore multithreading de diferents modalitats de paral·lelització de multiplicacions de matrius de nombres enters i de nombres en coma flotant mitjançant el model de memòria compartida OpenMP versió 2.5 i OpenMP versió 3.0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo analiza el rendimiento de cuatro nodos de cómputo multiprocesador de memoria compartida para resolver el problema N-body. Se paraleliza el algoritmo serie, y se codifica usando el lenguaje C extendido con OpenMP. El resultado son dos variantes que obedecen a dos criterios de optimización diferentes: minimizar los requisitos de memoria y minimizar el volumen de cómputo. Posteriormente, se realiza un proceso de análisis de las prestaciones del programa sobre los nodos de cómputo. Se modela el rendimiento de las variantes secuenciales y paralelas de la aplicación, y de los nodos de cómputo; se instrumentan y ejecutan los programas para obtener resultados en forma de varias métricas; finalmente se muestran e interpretan los resultados, proporcionando claves que explican ineficiencias y cuellos de botella en el rendimiento y posibles líneas de mejora. La experiencia de este estudio concreto ha permitido esbozar una incipiente metodología de análisis de rendimiento, identificación de problemas y sintonización de algoritmos a nodos de cómputo multiprocesador de memoria compartida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Performance analysis is the task of monitor the behavior of a program execution. The main goal is to find out the possible adjustments that might be done in order improve the performance. To be able to get that improvement it is necessary to find the different causes of overhead. Nowadays we are already in the multicore era, but there is a gap between the level of development of the two main divisions of multicore technology (hardware and software). When we talk about multicore we are also speaking of shared memory systems, on this master thesis we talk about the issues involved on the performance analysis and tuning of applications running specifically in a shared Memory system. We move one step ahead to take the performance analysis to another level by analyzing the applications structure and patterns. We also present some tools specifically addressed to the performance analysis of OpenMP multithread application. At the end we present the results of some experiments performed with a set of OpenMP scientific application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo analiza el rendimiento del algoritmo de alineamiento de secuencias conocido como Needleman-Wunsch, sobre 3 sistemas de cómputo multiprocesador diferentes. Se analiza y se codifica el algoritmo serie usando el lenguaje de programación C y se plantean una serie de optimizaciones con la finalidad de minimizar el volumen y el tiempo de cómputo. Posteriormente, se realiza un análisis de las prestaciones del programa sobre los diferentes sistemas de cómputo. En la segunda parte del trabajo, se paraleliza el algoritmo serie y se codifica ayudándonos de OpenMP. El resultado son dos variantes del programa que difieren en la relación entre la cantidad de cómputo y la de comunicación. En la primera variante, la comunicación entre procesadores es poco frecuente y se realiza tras largos periodos de ejecución (granularidad gruesa). En cambio, en la segunda variante las tareas individuales son relativamente pequeñas en término de tiempo de ejecución y la comunicación entre los procesadores es frecuente (granularidad fina). Ambas variantes se ejecutan y analizan en arquitecturas multicore que explotan el paralelismo a nivel de thread. Los resultados obtenidos muestran la importancia de entender y saber analizar el efecto del multicore y multithreading en el rendimiento.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este documento refleja el estudio de investigación para la detección de factores que afectan al rendimiento en entornos multicore. Debido a la gran diversidad de arquitecturas multicore se ha definido un marco de trabajo, que consiste en la adopción de una arquitectura específica, un modelo de programación basado en paralelismo de datos, y aplicaciones del tipo Single Program Multiple Data. Una vez definido el marco de trabajo, se han evaluado los factores de rendimiento con especial atención al modelo de programación. Por este motivo, se ha analizado la librería de threads y la API OpenMP para detectar aquellas funciones sensibles de ser sintonizadas al permitir un comportamiento adaptativo de la aplicación al entorno, y que dependiendo de su adecuada utilización han de mejorar el rendimiento de la aplicación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el entorno actual, diversas ramas de las ciencias, tienen la necesidad de auxiliarse de la computación de altas prestaciones para la obtención de resultados a relativamente corto plazo. Ello es debido fundamentalmente, al alto volumen de información que necesita ser procesada y también al costo computacional que demandan dichos cálculos. El beneficio al realizar este procesamiento de manera distribuida y paralela, logra acortar los tiempos de espera en la obtención de los resultados y de esta forma posibilita una toma decisiones con mayor anticipación. Para soportar ello, existen fundamentalmente dos modelos de programación ampliamente extendidos: el modelo de paso de mensajes a través de librerías basadas en el estándar MPI, y el de memoria compartida con la utilización de OpenMP. Las aplicaciones híbridas son aquellas que combinan ambos modelos con el fin de aprovechar en cada caso, las potencialidades específicas del paralelismo en cada uno. Lamentablemente, la práctica ha demostrado que la utilización de esta combinación de modelos, no garantiza necesariamente una mejoría en el comportamiento de las aplicaciones. Por lo tanto, un análisis de los factores que influyen en el rendimiento de las mismas, nos beneficiaría a la hora de implementarlas pero también, sería un primer paso con el fin de llegar a predecir su comportamiento. Adicionalmente, supondría una vía para determinar que parámetros de la aplicación modificar con el fin de mejorar su rendimiento. En el trabajo actual nos proponemos definir una metodología para la identificación de factores de rendimiento en aplicaciones híbridas y en congruencia, la identificación de algunos factores que influyen en el rendimiento de las mismas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El rápido crecimiento del los sistemas multicore y los diversos enfoques que estos han tomado, permiten que procesos complejos que antes solo eran posibles de ejecutar en supercomputadores, hoy puedan ser ejecutados en soluciones de bajo coste también denominadas "hardware de comodidad". Dichas soluciones pueden ser implementadas usando los procesadores de mayor demanda en el mercado de consumo masivo (Intel y AMD). Al escalar dichas soluciones a requerimientos de cálculo científico se hace indispensable contar con métodos para medir el rendimiento que los mismos ofrecen y la manera como los mismos se comportan ante diferentes cargas de trabajo. Debido a la gran cantidad de tipos de cargas existentes en el mercado, e incluso dentro de la computación científica, se hace necesario establecer medidas "típicas" que puedan servir como soporte en los procesos de evaluación y adquisición de soluciones, teniendo un alto grado de certeza de funcionamiento. En la presente investigación se propone un enfoque práctico para dicha evaluación y se presentan los resultados de las pruebas ejecutadas sobre equipos de arquitecturas multicore AMD e Intel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote sensing spatial, spectral, and temporal resolutions of images, acquired over a reasonably sized image extent, result in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is very attractive for monitoring, management, and scienti c activities. With Moore's Law alive and well, more and more parallelism is introduced into all computing platforms, at all levels of integration and programming to achieve higher performance and energy e ciency. Being the geometric calibration process one of the most time consuming processes when using remote sensing images, the aim of this work is to accelerate this process by taking advantage of new computing architectures and technologies, specially focusing in exploiting computation over shared memory multi-threading hardware. A parallel implementation of the most time consuming process in the remote sensing geometric correction has been implemented using OpenMP directives. This work compares the performance of the original serial binary versus the parallelized implementation, using several multi-threaded modern CPU architectures, discussing about the approach to nd the optimum hardware for a cost-e ective execution.