36 resultados para Object Tracking
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
En aquest treball realitzem un estudi sobre la detecció y la descripció de punts característics, una tecnologia que permet extreure informació continguda en les imatges. Primerament presentem l'estat de l'art juntament amb una avaluació dels mètodes més rellevants. A continuació proposem els nous mètodes que hem creat de detecció i descripció, juntament amb l'algorisme òptim anomenat DART, el qual supera l'estat de l'art. Finalment mostrem algunes aplicacions on s'utilitzen els punts DART. Basant-se en l'aproximació de l'espai d'escales Gaussià, el detector proposat pot extreure punts de distint tamany invariants davant canvis en el punt de vista, la rotació i la iluminació. La reutilització de l'espai d'escales durant el procés de descripció, així com l'ús d'estructures simplificades i optimitzades, permeten realitzar tot el procediment en un temps computacional menor a l'obtingut fins al moment. Així s'aconsegueixen punts invariants i distingibles de forma ràpida, el qual permet la seva utilització en aplicacions com el seguiment d'objectes, la reconstrucció d'escenaris 3D i en motors de cerca visual.
Resumo:
El present TFM té per objectiu aplicar tècniques d'intel·ligència artificial per realitzar el seguiment de les extremitats dels ratolins i les vibrisses del seu musell. Aquest objectiu es deriva de la necessitat per part dels realitzadors d'experiments optogenètics de registrar els moviments dels ratolins.
Resumo:
Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest duration corresponding to the maturity stage (approximately 80% of the total time).
Resumo:
In robotics, having a 3D representation of the environment where a robot is working can be very useful. In real-life scenarios, this environment is constantly changing for example by human interaction, external agents or by the robot itself. Thus, the representation needs to be constantly updated and extended to account for these dynamic scene changes. In this work we face the problem of representing the scene where a robot is acting. Moreover, we ought to improve this representation by reusing the information obtained in previous scenes. Our goal is to build a method to represent a scene and to update it while changes are produced. In order to achieve that, different aspects of computer vision such as space representation or feature tracking are discussed
Resumo:
Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.
Resumo:
Report for the scientific sojourn at the Swiss Federal Institute of Technology Zurich, Switzerland, between September and December 2007. In order to make robots useful assistants for our everyday life, the ability to learn and recognize objects is of essential importance. However, object recognition in real scenes is one of the most challenging problems in computer vision, as it is necessary to deal with difficulties. Furthermore, in mobile robotics a new challenge is added to the list: computational complexity. In a dynamic world, information about the objects in the scene can become obsolete before it is ready to be used if the detection algorithm is not fast enough. Two recent object recognition techniques have achieved notable results: the constellation approach proposed by Lowe and the bag of words approach proposed by Nistér and Stewénius. The Lowe constellation approach is the one currently being used in the robot localization project of the COGNIRON project. This report is divided in two main sections. The first section is devoted to briefly review the currently used object recognition system, the Lowe approach, and bring to light the drawbacks found for object recognition in the context of indoor mobile robot navigation. Additionally the proposed improvements for the algorithm are described. In the second section the alternative bag of words method is reviewed, as well as several experiments conducted to evaluate its performance with our own object databases. Furthermore, some modifications to the original algorithm to make it suitable for object detection in unsegmented images are proposed.
Resumo:
The experiment aimed to study approach and locomotive behaviour as indicators of fear in a novel object test carried out in pigs. Thirty post-weaning (30 kg) and 30 finishing (90 kg) pigs were exposed to visual, auditory and olfactory novel stimuli during 2 different experiments. The facilities consisted of a test pen in which a trough was located. The trough contained chopped apples. Once the animals were trained to enter the test pen individually they were subjected to 3 different fear stimuli. These stimuli were applied in the test pen and next to the trough. The variables studied were feeding behaviour, approach behaviour (the distance and position of the animal with respect to the trough) and locomotive behaviour (general activity, reluctance to move, turning back and retreat attempts). Two groups were studied: saline and midazolam treated group. Twenty minutes before the start of the sessions, 15 post-weaning and finishing pigs received an intramuscular injection of 0.20 and 0.15 mg/kg, respectively, midazolam (Dormicum1). The saline pigs (15 animals per group) were injected with saline. The administration of midazolam increased the feeding behaviour and approaching behaviour, and reduced the locomotive behaviour. In front of the visual and olfactory stimuli post-weaning pigs showed a higher general activity than finishing pigs, but the contrary was found when the auditory stimulus was applied. The olfactory stimulus was more related to the turning back behaviour, whereas the visual stimulus was more related to retreat attempts. Although it could be concluded that reluctant to move was the most common response to the different fear stimuli applied in our study regardless of the age of animals, the combination of reluctant to move and turning back would be a good criterion to assess fear in domestic pigs. The use of midazolam as anxiolytic for studies of fear in commercial conditions in pigs is recommended.
Resumo:
In this paper we describe an open learning object repository on Statistics based on DSpace which contains true learning objects, that is, exercises, equations, data sets, etc. This repository is part of a large project intended to promote the use of learning object repositories as part of the learning process in virtual learning environments. This involves the creation of a new user interface that provides users with additional services such as resource rating, commenting and so. Both aspects make traditional metadata schemes such as Dublin Core to be inadequate, as there are resources with no title or author, for instance, as those fields are not used by learners to browse and search for learning resources in the repository. Therefore, exporting OAI-PMH compliant records using OAI-DC is not possible, thus limiting the visibility of the learning objects in the repository outside the institution. We propose an architecture based on ontologies and the use of extended metadata records for both storing and refactoring such descriptions.
Resumo:
A medida que avanza la tecnolog a, cada vez son m as comunes los libros digitales. Por eso, existen varias formas de mejorar la experiencia de lectura del usuario, como mostrar la de nici on de una palabra que resulte dif cil, o resaltar lo importante del texto cuando se pasa la vista por encima. En este proyecto, se ha investigado la base de esto con la ayuda de un Eye Tracker. Se ha implementado una clasi caci on en palabras f aciles y dif ciles dependiendo de c omo una persona lee, y una forma de saber si se est a leyendo el texto o pasando la vista por encima.
Resumo:
En aquest treball s'intenta fer una síntesi de les especificacions aportades per l'estàndard definit com a SQL: 1999, tot analitzant les ampliacions que fan referència a la nova orientació a l'objecte i a la incorporació de l'herència com a principal element diferenciador.
Resumo:
L'objectiu és estudiar les característiques orientades a l'objecte de l'estàndard SQL: 1999 i posar-les a prova amb un producte comercial que les suporti.
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one