19 resultados para ORGANOMERCAPTAN MONOLAYERS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We study the dynamics of annihilation of point defects in Langmuir monolayers. The absence of hydrodynamic effects allows us to quantitatively relate the asymmetry in defect mobility to the elastic anisotropy of the material, which in turn can be varied through the control of the surface pressure applied to the monolayer. Using the proposed theoretical analysis, we are able to obtain rather elusive equilibrium properties out of relatively simple dynamical measurements. In particular, we measure the elastic constants and their pressure dependence.
Resumo:
A model of a phase-separating two-component Langmuir monolayer in the presence of a photoinduced reaction interconverting two components is formulated. An interplay between phase separation, orientational ordering, and reaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources, and vortex defects.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
We study the dynamics of annihilation of point defects in Langmuir monolayers. The absence of hydrodynamic effects allows us to quantitatively relate the asymmetry in defect mobility to the elastic anisotropy of the material, which in turn can be varied through the control of the surface pressure applied to the monolayer. Using the proposed theoretical analysis, we are able to obtain rather elusive equilibrium properties out of relatively simple dynamical measurements. In particular, we measure the elastic constants and their pressure dependence.
Resumo:
We have studied the structural changes that fatty acid monolayers in the Ov phase undergo when a simple shear flow is imposed. A strong coupling is revealed by the changes in domain structure that are observable using Brewster angle microscopy, suggesting the possibility of shear alignment. The dependence of the alignment on the molecular polar tilt proves that the mechanism is different than in nematic liquid crystals. We argue that the degenerate lattice symmetry lines of the underlying pseudohexagonal lattice align in the flow direction, and we explain the observed alignment angle using geometrical arguments.
Traveling waves and nonequilibrium stationary patterns in two-component reactive Langmuir monolayers
Resumo:
A simple kinetic model of a two-component phase-separating Langmuir monolayer with a chemical reaction is proposed. Its analysis and numerical simulations show that nonequilibrium periodic stationary structures and patterns of traveling stripes can spontaneously develop. The nonequilibrium phase diagram of this system is constructed and the properties of the patterns are discussed.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
Monodispersed colloidal crystals based on silica sub-micrometric particles were synthesized using the Stöber-Fink-Bohn process. The control of nucleation and coalescence result in improved characteristics such as high sphericity and very low size dispersion. The resulting silica particles show characteristics suitable for self-assembling across large areas of closely-packed 2D crystal monolayers by an accurate Langmuir-Blodgett deposition process on glass, fused silica and silicon substrates. Due to their special optical properties, colloidal films have potential applications in fields including photonics, electronics, electro-optics, medicine (detectors and sensors), membrane filters and surface devices. The deposited monolayers of silica particles were characterized by means of FESEM, AFM and optical transmittance measurements in order to analyze their specific properties and characteristics. We propose a theoretical calculation for the photonic band gaps in 2D systems using an extrapolation of the photonic behavior of the crystal from 3D to 2D. In this work we show that the methodology used and the conditions in self-assembly processes are decisive for producing high-quality two-dimensional colloidal crystals by the Langmuir-Blodgett technique.
Resumo:
Durant el període de gaudiment de la beca, des del dia 9 de març del 2007 fins el dia 8 de març del 2010, s’han dut a terme diferents tipus d’experiments amb sistemes bidimensionals com són les monocapes de Langmuir. Inicialment es va començar per l’estudi i la caracterització d’aquests sistemes experimentals, tant en repòs com en dinàmic, com és l’estudi de la reposta col•lectiva molecular de dominis d’un azoderivat fotosensible al rotar el pla de polarització mentre es mante sota il•luminació constant i els estudis de sistemes bidimensionals al collapse que es poden relacionar a les propietats viscoplàstiques dels sòlids. Una altra via d’estudi és la reologia d’aquests sistemes bidimensionals quan flueixen a través de canals. Arrel del sistema experimental més simple, una monocapa fluint per un canal, s’ha observat i estudiat l’efecte coll d’ampolla. Un cop assolit i estudiat el sistema més senzill, s’han aplicat tècniques més complexes de fabricació per fotolitografia per fer fluir monocapes de Langmuir per circuits on hi ha un gran contrast de mullat. Un cop aquests circuits es van implementar satisfactòriament en un sistema pel control de fluxos bidimensionals, es posen de manifest les possibles aplicacions futures d’aquests sistemes per l’estudi i el desenvolupament de la microfluídica bidimensional.
Resumo:
In this work we develop a viscoelastic bar element that can handle multiple rheo- logical laws with non-linear elastic and non-linear viscous material models. The bar element is built by joining in series an elastic and viscous bar, constraining the middle node position to the bar axis with a reduction method, and stati- cally condensing the internal degrees of freedom. We apply the methodology to the modelling of reversible softening with sti ness recovery both in 2D and 3D, a phenomenology also experimentally observed during stretching cycles on epithelial lung cell monolayers.
Resumo:
Different aspects of the structure-magnetism and morphology-magnetism correlation in the ultrathin limit are studied in epitaxial Fe films grown on MgO(001). In the initial stages of growth the presence of substrate steps, intrinsically higher than an Fe atomic layer, prevent the connection between Fe islands and hence the formation of large volume magnetic regions. This is proposed as an explanation to the superparamagnetic nature of ultrathin Fe films grown on MgO in addition to the usually considered islanded, or Vollmer-Weber, growth. Using this model, we explain the observed transition from superparamagnetism to ferromagnetism for Fe coverages above 3 monolayers (ML). However, even though ferromagnetism and magnetocrystalline anisotropy are observed for 4 ML, complete coverage of the MgO substrate by the Fe ultrathin films only occurs around 6 ML as determined by polar Kerr spectra and simulations that consider different coverage situations. In annealed 3.5 ML Fe films, shape or configurational anisotropy dominates the intrinsic magnetocrystalline anisotropy, due to an annealing induced continuous to islanded morphological transition. A small interface anisotropy in thicker films is observed, probably due to dislocations observed at the Fe¿MgO(001) interface.
Resumo:
In this paper we present the Raman scattering of self-assembled InSb dots grown on (001) oriented InP substrates. The samples were grown by pulsed molecular beam epitaxy mode. Two types of samples have been investigated. In one type the InSb dots were capped with 200 monolayers of InP; in the other type no capping was deposited after the InSb dot formation. We observe two peaks in the Raman spectra of the uncapped dot, while only one peak is observed in the Raman spectra of the capped dots. In the case of the uncapped dots the peaks are attributed to LO-like and TO-like vibration of completely relaxed InSb dots, in agreement with high resolution transmission electron microscopy photographs. The Raman spectra of the capped dot suggest a different strain state in the dot due to the capping layer.
Resumo:
An anomalously long transient is needed to achieve a steady pressurization of a fluid when forced to flow through micronarrowed channels under constant mechanical driving. This phenomenon, known as the "bottleneck effect" is here revisited from a different perspective, by using confined displacements of interfacial fluids. Compared to standard microfluidics, such effect admits in this case a neat quantitative characterization, which reveals intrinsic material characteristics of flowing monolayers and permits to envisage strategies for their controlled micromanipulation.
Resumo:
Membrane-active antimicrobial peptides, such as polymyxin B (PxB), are currently in the spotlight as potential candidates toovercome bacterial resistance. We have designed synthetic analogs ofPxB in order to determine the structural requirements for membraneaction. Since the mechanism of action of PxB involves interaction withboth the outer membrane and the cytoplasmic membrane of Gramnegative bacteria, we have used an approach based on mimicking theouter layers of these membranes using monolayers, Langmuir-Blodgettfilms and unilamelar vesicles, and applying a battery of biophysicalmethods in order to dissect the different events of membraneinteraction. Collectively, results indicate that the PxB analogues act inthe bacterial membrane by the same mechanism than PxB, and that cationic amphipathicity determines peptide activity.
Resumo:
Membrane-active antimicrobial peptides, such as polymyxin B (PxB), are currently in the spotlight as potential candidates toovercome bacterial resistance. We have designed synthetic analogs ofPxB in order to determine the structural requirements for membraneaction. Since the mechanism of action of PxB involves interaction withboth the outer membrane and the cytoplasmic membrane of Gramnegative bacteria, we have used an approach based on mimicking theouter layers of these membranes using monolayers, Langmuir-Blodgettfilms and unilamelar vesicles, and applying a battery of biophysicalmethods in order to dissect the different events of membraneinteraction. Collectively, results indicate that the PxB analogues act inthe bacterial membrane by the same mechanism than PxB, and that cationic amphipathicity determines peptide activity.