2 resultados para OCOTEA-POROSA
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
El projecte se centra en la fabricació de nanomaterials 1D mitjançant una estratègia sintètica, basada en la combinació de metodologies top-down i bottom-up: la deposició de materials diversos a l’interior de l’estructura porosa de l’alúmina anòdica. En una primera etapa del treball, es desenvolupa el procés de fabricació de les membranes poroses, conegut com anoditzat de l’alumini. S’analitzen diversos aspectes del procés per tal d’optimitzar-lo i aconseguir la fabricació de capes poroses d’elevada qualitat de manera controlada, reproduïble i utilitzant un alumini de baixa puresa. Posteriorment, s’avalua la versatilitat de les membranes com a plantilla per a l’obtenció de nanomaterials amb geometria 1D (nanofils i nanotubs) mitjançant tècniques diverses. D’una banda es fabriquen nanofils de níquel magnètics mitjançant tècniques electroquímiques de deposició, amb la novetat que la formació del dipòsit té lloc directament a través del sistema alumini – alúmina. D’altra banda, s’obtenen nanotubs d’òxid de ferro magnètic (Fe3O4) mitjançant la tècnica de deposició per capes atòmiques. Les dues tècniques permeten un alt control de tots els paràmetres estructurals. Finalment, s’inclou un estudi sobre la preparació de membranes poroses d’alúmina anòdica avançades. La principal característica d’aquestes membranes és la modulació a voluntat del diàmetre de porus, resultant en pseudo-nanoestructures 1D.
Resumo:
Investigación producida a partir de una estancia en la Université Paul Sabatier, Toulouse III - CNRS, entre 2007 y 2009. Durante los últimos años la investigación centrada en nuevos materiales de tamaño nanoscòpico (nanopartículas, quantum dots, nanotubos de carbono,...) ha experimentado un crecimiento considerable debido a las especiales propiedades de los "nanoobjetos" con respecto a magnetismo, catálisis, conductividad eléctrica, etc ... Sin embargo, hoy en día todavía existen pocas aplicaciones de las nanopartículas en temas medioambientales. Uno de los motivos de esta situación es la posible toxicidad de los nanoobjetos, pero existe también una dificultad tecnológica dado que las nanopartículas tienden a agregarse y es muy difícil manipularlas sin que pierdan sus propiedades especiales. Así, aunque la preparación de materiales catalíticos nanoestructurados es muy interesante, es necesario definir nuevas estrategias para prepararlos. Este proyecto de investigación tiene como objetivo principal la preparación de nuevas membranas catalíticas con nanopartículas metálicas en el interior para aplicaciones de tratamiento de agua. La innovación principal de este proyecto consiste en que las nanopartículas no son introducidas en la matriz polimérica una vez preformadas sino que se hacen crecer en el interior de la matriz polimérica mediante una síntesis intermatricial. El único requisito es que la matriz polimérica contenga grupos funcionales capaces de interaccionar con los precursores de las nanopartículas. Una vez finalizado el proyecto se puede afirmar que se han logrado parte de los objetivos planteados inicialmente. Concreamente ha quedado demostrado que se pueden sintetizar nanopartículas metálicas de metales nobles (platino y paladio) en membranas de fibra hueca de micro- y ultrafiltración siguiendo dos metodologías diferentes: modificación fotoquímica de polímeros y deposición de multicapas de polielectrolitos. Los nuevos materiales son efectivos en la catálisis de reducción de un compuesto modelo (4-nitrofenol con borohidruro de sodio) y, en general, los resultados han sido satisfactorios. Sin embargo, se ha puesto de manifiesto que el uso de un reactivo que genera hidrógeno gas en contacto con la solución acuosa dificulta enormemente la implementación de la reacción catalítica al ser el medio de la membrana una matriz porosa. Así, como conclusión principal se puede decir que se han encontrado las limitaciones de esta aproximación y se sugieren dos posibilidades de continuidad: la utilización de las membranas sintetizadas en contactores gas-líquido o bien el estudio y optimización del sistema de membrana en configuración de membranas planas, un objetivo más asequible dada su menor complejidad. Esta investigación se ha realizado en el seno del “Laboratoire de Génie Chimique” de Toulouse y del Departamento de Química de la Michigan State University y ha sido posible gracias a un proyecto financiado por la “Agence National pour la Recherce” y al programa PERMEANT entre el CNRS y la NSF.