7 resultados para North Atlantic Oscillation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The strong influence of the winter North Atlantic Oscillation (NAO) on the total ozone column (TOC) in the Northern Hemisphere has been reported in a number of previous studies. In this study we show that this influence is not restricted to the winter season but is also significant in summer. Especially interesting effects of the summer NAO (SNAO) on the TOC are observed over the eastern Mediterranean region, where a strongly positive SNAO index is related to the creation of a geopotential height-negative anomaly over Greece with maximum amplitude at 200 hPa. Another anomaly was observed west of the Iberian Peninsula with similar effects on the TOC. Analyzing 26 years of Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) data from the equator to midlatitudes (60°) in the Northern Hemisphere, we demonstrate that the SNAO accounts for up to 30% of the TOC variability with a strong latitudinal and longitudinal dependence. Additionally, we obtain significant correlations between the NAO index and the thermal tropopause pressure and also with the geopotential heights at 200 and 500 hPa. Finally, some indirect connections between NAO and the TOC through teleconnections are also discussed.
Resumo:
An annual-resolved precipitation reconstruction for the last 800 yr in Southern Spain has been performed using stable carbon isotope (δ13C) of Pinus nigra tree rings. The reconstruction exhibits high- to low-frequency variability and distinguishes a Little Ice Age (LIA, AD 13501850) characterized by lower averaged rainfall than both in the transition from the Medieval Climate Anomaly to the LIA and in the 20th century. The driest conditions are recorded during the Maunder solar Minimum (mid 17thearly 18th centuries), in good agreement with the Spanish documentary archive. Similar linkage between solar activity (maximum/minimum) and precipitation (increase/decrease) is observed throughout the entire LIA. Additionally, the relationship between the hydrological pattern in the Iberian Peninsula and Morocco during the LIA suggests different spatial distribution of precipitation in the south-eastern sector of the North Atlantic region such as it is known currently. Whereas in the instrumental record the precipitation evolves similarly in both regions and opposite to the North Atlantic oscillation (NAO) index, the coldest periods of the LIA shows a contrasting pattern with drier conditions in the South of Spain and wetter in Northern Africa. We suggest an extreme negative NAO conditions, accompanied by a southward excursion of the winter rainfall band beyond that observed in the last century, can explain this contrast. The sustained NAO conditions could have been triggered by solar minima and higher volcanic activity during the LIA.
Resumo:
This paper discusses uncertainties in model projections of summer drying in the Euro-Mediterranean region related to errors and uncertainties in the simulation of the summer NAO (SNAO). The SNAO is the leading mode of summer SLP variability in the North Atlantic/European sector and modulates precipitation not only in the vicinity of the SLP dipole (northwest Europe) but also in the Mediterranean region. An analysis of CMIP3 models is conducted to determine the extent to which models reproduce the signature of the SNAO and its impact on precipitation and to assess the role of the SNAO in the projected precipitation reductions. Most models correctly simulate the spatial pattern of the SNAO and the dry anomalies in northwest Europe that accompany the positive phase. The models also capture the concurrent wet conditions in the Mediterranean, but the amplitude of this signal is too weak, especially in the east. This error is related to the poor simulation of the upper-level circulation response to a positive SNAO, namely the observed trough over the Balkans that creates potential instability and favors precipitation. The SNAO is generally projected to trend upwards in CMIP3 models, leading to a consistent signal of precipitation reduction in NW Europe, but the intensity of the trend varies greatly across models, resulting in large uncertainties in the magnitude of the projected drying. In the Mediterranean, because the simulated influence of the SNAO is too weak, no precipitation increase occurs even in the presence of a strong SNAO trend, reducing confidence in these projections.
Resumo:
Tropical cyclones are affected by a large number of climatic factors, which translates into complex patterns of occurrence. The variability of annual metrics of tropical-cyclone activity has been intensively studied, in particular since the sudden activation of the North Atlantic in the mid 1990’s. We provide first a swift overview on previous work by diverse authors about these annual metrics for the North-Atlantic basin, where the natural variability of the phenomenon, the existence of trends, the drawbacks of the records, and the influence of global warming have been the subject of interesting debates. Next, we present an alternative approach that does not focus on seasonal features but on the characteristics of single events [Corral et al., Nature Phys. 6, 693 (2010)]. It is argued that the individual-storm power dissipation index (PDI) constitutes a natural way to describe each event, and further, that the PDI statistics yields a robust law for the occurrence of tropical cyclones in terms of a power law. In this context, methods of fitting these distributions are discussed. As an important extension to this work we introduce a distribution function that models the whole range of the PDI density (excluding incompleteness effects at the smallest values), the gamma distribution, consisting in a powerlaw with an exponential decay at the tail. The characteristic scale of this decay, represented by the cutoff parameter, provides very valuable information on the finiteness size of the basin, via the largest values of the PDIs that the basin can sustain. We use the gamma fit to evaluate the influence of sea surface temperature (SST) on the occurrence of extreme PDI values, for which we find an increase around 50 % in the values of these basin-wide events for a 0.49 C SST average difference. Similar findings are observed for the effects of the positive phase of the Atlantic multidecadal oscillation and the number of hurricanes in a season on the PDI distribution. In the case of the El Niño Southern oscillation (ENSO), positive and negative values of the multivariate ENSO index do not have a significant effect on the PDI distribution; however, when only extreme values of the index are used, it is found that the presence of El Niño decreases the PDI of the most extreme hurricanes.
Resumo:
In pelagic species inhabiting large oceans, genetic differentiation tends to be mild and populations devoid of structure. However, large cetaceans have provided many examples of structuring. Here we investigate whether the sperm whale, a pelagic species with large population sizes and reputedly highly mobile, shows indication of structuring in the eastern North Atlantic, an ocean basin in which a single population is believed to occur. To do so, we examined stable isotope values in sequential growth layer groups of teeth from individuals sampled in Denmark and NW Spain. In each layer we measured oxygen- isotope ratios (δ18O) in the inorganic component (hydroxyapatite), and nitrogen and carbon isotope ratios (δ15N: δ13C) in the organic component (primarily collagenous). We found significant differences between Denmark and NW Spain in δ15N and δ18O values in the layer deposited at age 3, considered to be the one best representing the baseline of the breeding ground, in δ15N, δ13C and δ18O values in the period up to age 20, and in the ontogenetic variation of δ15N and δ18O values. These differences evidence that diet composition, use of habitat and/or migratory destinations are dissimilar between whales from the two regions and suggest that the North Atlantic population of sperm whales is more structured than traditionally accepted.
Resumo:
We performed a spatiotemporal analysis of a network of 21 Scots pine (Pinus sylvestris) ring-width chronologies in northern Fennoscandia by means of chronology statistics and multivariate analyses. Chronologies are located on both sides (western and eastern) of the Scandes Mountains (67°N-70°N, 15°E-29°E). Growth relationships with temperature, precipitation, and North Atlantic Oscillation (NAO) indices were calculated for the period 1880-1991. We also assessed their temporal stability. Current July temperature and, to a lesser degree, May precipitation are the main growth limiting factors in the whole area of study. However, Principal Component Analysis (PCA) and mean interseries correlation revealed differences in radial growth between both sides of the Scandes Mountains, attributed to the Oceanic-Continental climatic gradient in the area. The gradient signal is temporally variable and has strengthened during the second half of the 20th century. Northern Fennoscandia Scots pine growth is positively related to early winter NAO indices previous to the growth season and to late spring NAO. NAO/growth relationships are unstable and have dropped in the second half of the 20th century. Moreover, they are noncontinuous through the range of NAO values: for early winter, only positive NAO indices enhance tree growth in the next growing season, while negative NAO does not. For spring, only negative NAO is correlated with radial growth.
Resumo:
Major oil spills can have long-term impacts since oil pollution does not only result in acute mortality of marine organisms, but also affects productivity levels, predator-prey dynamics, and damages habitats that support marine communities. However, despite the conservation implications of oil accidents, the monitoring and assessment of its lasting impacts still remains a difficult and daunting task. Here, we used European shags to evaluate the overall, lasting effects of the Prestige oil spill (2002) on the affected marine ecosystem. Using δ15N and Hg analysis, we trace temporal changes in feeding ecology potentially related to alterations of the food web due to the spill. Using climatic and oceanic data, we also investigate the influence of North Atlantic Oscillation (NAO) index, the sea surface temperature (SST) and the chlorophyll a (Chl a) on the observed changes. Analysis of δ15N and Hg concentrations revealed that after the Prestige oil spill, shag chicks abruptly switched their trophic level from a diet based on a high percentage of demersal-benthic fish to a higher proportion of pelagic/semi-pelagic species. There was no evidence that Chl a, SST and NAO reflected any particular changes or severity in environmental conditions for any year or season that may explain the sudden change observed in trophic level. Thus, this study highlighted an impact on the marine food web for at least three years. Our results provide the best evidence to date of the long-term consequences of the Prestige oil spill. They also show how, regardless of wider oceanographic variability, lasting impacts on predator-prey dynamics can be assessed using biochemical markers. This is particularly useful if larger scale and longer term monitoring of all trophic levels is unfeasible due to limited funding or high ecosystem complexity.