12 resultados para Neuroblastoma Cell Assays
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
The main difficulty in the successful treatment of metastatic melanoma is that this type of cancer is known to be resistant to chemotherapy. Chemotherapy remains the treatment of choice, and dacarbazine (DTIC) is the best standard treatment. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and antimetastatic properties. The objective of this study was to evaluate the signaling pathways involved in melanoma cell death after treatment with DM-1 compared to the standard agent for melanoma treatment, DTIC. Cell death was evaluated by flow cytometry for annexin V and iodide propide, cleaved caspase 8, and TNF-R1 expression. Hoechst 33342 staining was evaluated by fluorescent microscopy; lipid peroxidation and cell viability (MTT) were evaluated by colorimetric assays. The antiproliferative effects of the drugs were evaluated by flow cytometry for cyclin D1 and Ki67 expression. Mice bearing B16F10 melanoma were treated with DTIC, DM-1, or both therapies. DM-1 induced significant apoptosis as indicated by the presence of cleaved caspase 8 and an increase in TNF-R1 expression in melanoma cells. Furthermore, DM-1 had antiproliferative effects in this the same cell line. DTIC caused cell death primarily by necrosis, and a smaller melanoma cell population underwent apoptosis. DTIC induced oxidative stress and several physiological changes in normal melanocytes, whereas DM-1 did not significantly affect the normal cells. DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 monotherapy or in combination with DTIC, besides survival rate increase. Altogether, these data confirm DM-1 as a chemotherapeutic agent with effective tumor control properties and a lower incidence of side effects in normal cells compared to DTIC.
Resumo:
Background: Despite the widespread use of interferon-gamma release assays (IGRAs), their role in diagnosing tuberculosis and targeting preventive therapy in HIV-infected patients remains unclear. We conducted a comprehensive systematic review to contribute to the evidence-based practice in HIV-infected people. Methodology/Principal Findings: We searched MEDLINE, Cochrane, and Biomedicine databases to identify articles published between January 2005 and July 2011 that assessed QuantiFERON H -TB Gold In-Tube (QFT-GIT) and T-SPOT H .TB (T-SPOT.TB) in HIV-infected adults. We assessed their accuracy for the diagnosis of tuberculosis and incident active tuberculosis, and the proportion of indeterminate results. The search identified 38 evaluable studies covering a total of 6514 HIV-infected participants. The pooled sensitivity and specificity for tuberculosis were 61% and 72% for QFT-GIT, and 65% and 70% for T-SPOT.TB. The cumulative incidence of subsequent active tuberculosis was 8.3% for QFT-GIT and 10% for T-SPOT.TB in patients tested positive (one study each), and 0% for QFT-GIT (two studies) and T-SPOT.TB (one study) respectively in those tested negative. Pooled indeterminate rates were 8.2% for QFT-GIT and 5.9% for T-SPOT.TB. Rates were higher in high burden settings (12.0% for QFT-GIT and 7.7% for T-SPOT.TB) than in low-intermediate burden settings (3.9% for QFT-GIT and 4.3% for T-SPOT.TB). They were also higher in patients with CD4 + T-cell count, 200 (11.6% for QFT-GIT and 11.4% for T-SPOT.TB) than in those with CD4 + T-cell count $ 200 (3.1% for QFT-GIT and 7.9% for T-SPOT.TB). Conclusions/Significance: IGRAs have suboptimal accuracy for confirming or ruling out active tuberculosis disease in HIV-infected adults. While their predictive value for incident active tuberculosis is modest, a negative QFT-GIT implies a very low short- to medium-term risk. Identifying the factors associated with indeterminate results will help to optimize the use of IGRAs in clinical practice, particularly in resource-limited countries with a high prevalence of HIV-coinfection.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
Background: The G1-to-S transition of the cell cycle in the yeast Saccharomyces cerevisiae involves an extensive transcriptional program driven by transcription factors SBF (Swi4-Swi6) and MBF (Mbp1-Swi6). Activation of these factors ultimately depends on the G1 cyclin Cln3. Results: To determine the transcriptional targets of Cln3 and their dependence on SBF or MBF, we first have used DNA microarrays to interrogate gene expression upon Cln3 overexpression in synchronized cultures of strains lacking components of SBF and/or MBF. Secondly, we have integrated this expression dataset together with other heterogeneous data sources into a single probabilistic model based on Bayesian statistics. Our analysis has produced more than 200 transcription factor-target assignments, validated by ChIP assays and by functional enrichment. Our predictions show higher internal coherence and predictive power than previous classifications. Our results support a model whereby SBF and MBF may be differentially activated by Cln3. Conclusions: Integration of heterogeneous genome-wide datasets is key to building accurate transcriptional networks. By such integration, we provide here a reliable transcriptional network at the G1-to-S transition in the budding yeast cell cycle. Our results suggest that to improve the reliability of predictions we need to feed our models with more informative experimental data.
Resumo:
Somatostatin analogues (SAs) are potential anticancer agents. This study was designed to investigate the expression of somatostatin receptors (SSTRs) in melanoma cells and the effect of two SAs on cell proliferation and viability. Eighteen primary and metastatic human cutaneous melanoma cell lines were treated with octreotide and SOM230. Expression of SSTR1, SSTR2, SSTR3 and SSTR5 was assessed by real-time polymerase chain reaction. Proliferation, viability and cell death were assessed using standard assays. Inhibition was modelled by mixed-effect regression. Melanoma cells expressed one or more SSTR. Both SAs inhibited proliferation of most melanoma cell lines, but inhibition was less than 50%. Neither SA affected cell viability or induced cell death. The results suggest that melanoma cell lines express SSTRs. The SAs investigated, under the conditions used in this study, did not, however, significantly inhibit melanoma growth or induce cell death. Novel SAs, combination therapy with SAs and their anti-angiogenic properties should be further investigated.
Resumo:
Recently, three new polyomaviruses (KI, WU and Merkel cell polyomavirus) have been reported to infect humans. It has also been suggested that lymphotropic polyomavirus, a virus of simian origin, infects humans. KI and WU polyomaviruses have been detected mainly in specimens from the respiratory tract while Merkel cell polyomavirus has been described in a very high percentage of Merkel cell carcinomas. The distribution, excretion level and transmission routes of these viruses remain unknown. Here we analyzed the presence and characteristics of newly described human polyomaviruses in urban sewage and river water in order to assess the excretion level and the potential role of water as a route of transmission of these viruses. Nested-PCR assays were designed for the sensitive detection of the viruses studied and the amplicons obtained were confirmed by sequencing analysis. The viruses were concentrated following a methodology previously developed for the detection of JC and BK human polyomaviruses in environmental samples. JC polyomavirus and human adenoviruses were used as markers of human contamination in the samples. Merkel cell polyomavirus was detected in 7/8 urban sewage samples collected and in 2/7 river water samples. Also one urine sample from a pregnant woman, out of 4 samples analyzed, was positive for this virus. KI and WU polyomaviruses were identified in 1/8 and 2/8 sewage samples respectively. The viral strains detected were highly homologous with other strains reported from several other geographical areas. Lymphotropic polyomavirus was not detected in any of the 13 sewage neither in 9 biosolid/sludge samples analyzed. This is the first description of a virus isolated from sewage and river water with a strong association with cancer. Our data indicate that the Merkel cell polyomavirus is prevalent in the population and that it may be disseminated through the fecal/urine contamination of water. The procedure developed may constitute a useful tool for studying the excreted strains, prevalence and transmission of these recently described polyomaviruses.
Resumo:
Background The effect of maraviroc on the maintenance and the function of HIV-1-specific T cell responses remains unknown. Methods Subjects recently infected with HIV-1 were randomized to receive anti-retroviral treatment with or without maraviroc intensification for 48 weeks, and were monitored up to week 60. PBMC and in vitro-expanded T cells were tested for responses to the entire HIV proteome by ELISpot analyses. Intracellular cytokine staining assays were conducted to monitor the (poly)-functionality of HIV-1-specific T cells. Analyses were performed at baseline and week 24 after treatment start, and at week 60 (3 months after maraviroc discontinuation). Results Maraviroc intensification was associated with a slower decay of virus-specific T cell responses over time compared to the non-intensified regimen in both direct ex-vivo as well as in in-vitro expanded cells. The effector function profiles of virus-specific CD8+ T cells were indistinguishable between the two arms and did not change over time between the groups. Conclusions Maraviroc did not negatively impact any of the measured parameters, but was rather associated with a prolonged maintenance of HIV-1-specific T cell responses. Maraviroc, in addition to its original effect as viral entry inhibitor, may provide an additional benefit on the maintenance of virus-specific T cells which may be especially important for future viral eradication strategies.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Cationic nanovesicles have attracted considerable interest as effective carriers to improve the delivery of biologically active molecules into and through the skin. In this study, lipid-based nanovesicles containing three different cationic lysine-based surfactants were designed for topical administration. We used representative skin cell lines and in vitro assays to assess whether the cationic compounds modulate the toxic responses of these nanocarriers. The nanovesicles were characterized in both water and cell culture medium. In general, significant agglomeration occurred after 24 h incubation under cell culture conditions. We found different cytotoxic responses among the formulations, which depended on the surfactant,cell line (3T3, HaCaT, and THP-1) and endpoint assayed (MTT, NRU, and LDH). Moreover, no potential phototoxicity was detected in fibroblast or keratinocyte cells, whereas only a slight inflammatory response was induced, as detected by IL-1a and IL-8 production in HaCaT and THP-1 cell lines, respectively. A key finding of our research was that the cationic charge position and the alkyl chain length of the surfactants determine the nanovesicles resulting toxicity. The charge on the a-amino group of lysine increased the depletion of cell metabolic activity, as determined by the MTT assay, while a higher hydrophobicity tends to enhance the toxic responses of the nanovesicles. The insights provided here using different cell lines and assays offer a comprehensive toxicological evaluation of this group of new nanomaterials.