15 resultados para Nano

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Department of Structure and Constituents of Matter during 2007.The main focus of the work was on phenomena related to nano-electromechanical processes that take place on a cellular level. Additionally, it has also been performed independent work related to charge and energy transfer in bio molecules, energy transfer in coupled spin systems as well as electrodynamics of nonlinear metamaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous and nanocrystalline silicon, deposited by catalytic chemical vapour deposition, have been doped during deposition by the addition of diborane and phosphine in the feed gas, with concentrations in the region of 1%. The crystalline fraction, dopant concentration and electrical properties of the films are studied. The nanocrystalline films exhibited a high doping efficiency, both for n and p doping, and electrical characteristics similar to those of plasma-deposited films. The doping efficiency of n-type amorphous silicon is similar to that obtained for plasma-deposited electronic-grade amorphous silicon, whereas p-type layers show a doping efficiency of one order of magnitude lower. A higher deposition temperature of 450°C was required to achieve p-type films with electrical characteristics similar to those of plasma-deposited films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a remote O2 ion source is used for the formation of nano-oxide layers. The oxidation efficiency was measured in CoFe-oxide films, and a decrease of the oxide layer with the pan angle and the oxidation pressure is observed. For the same oxidation pressure, the oxidation efficiency depends on the O2 content in the Ar-O2 plasma. These results were applied in optimizing the fabrication of Al2O3 barrier for tunnel junctions. This method was also used to fabricate junctions with Fe-oxide layers inserted at the Al2O3-CoFe interface. TEM and magnetization data indicate that after anneal at 385°C, a homogeneous ferromagnetic Fe-oxide layer (Fe3O4?) is formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bicellar systems are lipid nanostructures formed by long- and short-chained phospholipids dispersed in aqueoussolution. Because of their attractive combination of lipid composition, small size and morphological versatility, bicellesbecame new targets for skin research. Bicelles modify the skin biophysical parameters and modulate the skin barrier function acting as enhancers for drug penetration. Moreover, these aggregates have the ability to penetrate through the narrowintercellular spaces of the skin stratum corneum and to reinforce its lipid lamellae. Their structures allows for the incorporation of different molecules that can be carried through the skin layers. Theremarkable versatility of bicelles is their most important characteristic, which makes it possible their use in different fields.These aggregates represent new nanosystems for skin applications. In this work we provide an overview of the main properties ofbicelles and their effects on the skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The University of Barcelona is developing a pilot-scale hot wire chemical vapor deposition (HW-CVD) set up for the deposition of nano-crystalline silicon (nc-Si:H) on 10 cm × 10 cm glass substrate at high deposition rate. The system manages 12 thin wires of 0.15-0.2 mm diameter in a very dense configuration. This permits depositing very uniform films, with inhomogeneities lower than 2.5%, at high deposition rate (1.5-3 nm/s), and maintaining the substrate temperature relatively low (250 °C). The wire configuration design, based on radicals' diffusion simulation, is exposed and the predicted homogeneity is validated with optical transmission scanning measurements of the deposited samples. Different deposition series were carried out by varying the substrate temperature, the silane to hydrogen dilution and the deposition pressure. By means of Fourier transform infrared spectroscopy (FTIR), the evolution in time of the nc-Si:H vibrational modes was monitored. Particular importance has been given to the study of the material stability against post-deposition oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feeding of the different developmental stages of Calanipeda aquaedulcis on natural particles (bacterio-, phyto- and microzooplankton) was measured in a Mediterranean salt marsh (Empordà wetlands, NE Iberian Peninsula). Bottle incubations were performed in the field both in autumn and spring. The results showed differences in the diet of the different developmental stages due to both prey type and size. In general, the size of the ingested prey increased with increasing size of the C. aquaedulcis stage. While C. aquaedulcis adults had high ingestion rates and selection coefficients for large prey (micro- and nanoplankton), nauplii preferentially consumed smaller prey items (picoplankton). Copepodites showed the widest prey size range, including pico-, nano- and microplankton. Nevertheless, the lower size limit for particle capture was similar for all stages, i.e. between 1.7 and 2.1 μm. Omnivory was observed in all stages of C. aquaedulcis. Heterotrophic prey (picoplankton, dinoflagellates and ciliates) were the most ingested items. The ability to partition the available food among the different developmental stages could represent an advantage in times of ood scarcity because it may reduce intraspecific competition. This may explain how C. aquaedulcis is able to predominate in the zooplankton community for several weeks during spring and summer ven in situations of low food availability

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compounds responsible for the colours and decorations in glass and glazed ceramics include: colouring agents (transition metal ions), pigments (micro-and nano-precipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron Radiation micro-X-ray Diffraction has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth dependent composition and crystal structure. Their nature and distribution across the glass/glazes decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro- XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and renaissance tin glazed ceramics from the 10th to the 17th century AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and treat two cases in which confinement effects play a crucial role, with the appearance of emergent properties. The presence of entropic barriers modifies the mean first-passage time distribution and therefore plays a very important role in ion transport through micro- and nano-channels. The functionality of molecular motors, modeled as Brownian ratchets, is strongly affected when the motor proceeds in a confined medium that may constitute another source of rectification. The interplay between ratchet and entropic rectification gives rise to a wide variety of dynamical behaviors, not observed when the Brownian motor proceeds in an unbounded medium. Entropic transport offers new venues of transport control and particle manipulation and new ways to engineer more efficient devices for transport at the nanoscale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the addition to sausage mix of tocopherols (200 mg/kg), a conventional starter culture with or without Staphylococcus carnosus, celery concentrate (CP) (0.23% and 0.46%), and two doses of nitrate (70 and 140 mg/kg expressed as NaNO(3)) on residual nitrate and nitrite amounts, instrumental CIE Lab color, tocol content, oxidative stability, and overall acceptability were studied in fermented dry-cured sausages after ripening and after storage. Nitrate doses were provided by nitrate-rich CP or a chemical grade source. The lower dose complies with the EU requirements governing the maximum for ingoing amounts in organic meat products. Tocopherol addition protected against oxidation, whereas the nitrate dose, nitrate source, or starter culture had little influence on secondary oxidation values. The residual nitrate and nitrite amounts found in the sausages with the lower nitrate dose were within EU-permitted limits for organic meat products and residual nitrate can be further reduced by the presence of the S. carnosus culture. Color measurements were not affected by the CP dose. Product consumer acceptability was not affected negatively by any of the factors studied. As the two nitrate sources behaved similarly for the parameters studied, CP is a useful alternative to chemical ingredients for organic dry-cured sausage production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The attachment of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 28213 onto six different materials used to manufacture dental implant abutments was quantitatively determined after 2 and 24 h of contact between the materials and the bacterial cultures. The materials were topographically characterized and their wettability determined, with both parameters subsequently related to bacterial adhesion. Atomic force microscopy, interferometry, and contact angle measurement were used to characterize the materials" surfaces. The results showed that neither roughness nor nano-roughness greatly influenced bacterial attachment whereas wettability strongly correlated with adhesion. After 2 h the degree of E. coli attachment markedly differed depending on the material whereas similar differences were not observed for S. aureus, which yielded consistently higher counts of adhered cells. Nevertheless, after 24 h the adhesion of the two species to the different test materials no longer significantly differed, although on all surfaces the numbers of finally adhered E. coli were higher than those of S. aureus

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS)supported on titanium sub-oxide (TiO22x) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO22x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25 photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of CD8+ cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4+ SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)–mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4+ T cells into strategies designed to enhance T cell immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.