44 resultados para Nakagami-fading channels
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The optimization of the pilot overhead in single-user wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-used block fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with the normalized Doppler frequency multiplied by the number of transmit antennas.
Resumo:
In the context of fading channels it is well established that, with a constrained transmit power, the bit rates achievable by signals that are not peaky vanish as the bandwidth grows without bound. Stepping back from the limit, we characterize the highest bit rate achievable by such non-peaky signals and the approximate bandwidth where that apex occurs. As it turns out, the gap between the highest rate achievable without peakedness and the infinite-bandwidth capacity (with unconstrained peakedness) is small for virtually all settings of interest to wireless communications. Thus, although strictly achieving capacity in wideband fading channels does require signal peakedness, bit rates not far from capacity can be achieved with conventional signaling formats that do not exhibit the serious practical drawbacks associated with peakedness. In addition, we show that the asymptotic decay of bit rate in the absence of peakedness usually takes hold at bandwidths so large that wideband fading models are called into question. Rather, ultrawideband models ought to be used.
Resumo:
We design powerful low-density parity-check (LDPC) codes with iterative decoding for the block-fading channel. We first study the case of maximum-likelihood decoding, and show that the design criterion is rather straightforward. Since optimal constructions for maximum-likelihood decoding do not performwell under iterative decoding, we introduce a new family of full-diversity LDPC codes that exhibit near-outage-limit performance under iterative decoding for all block-lengths. This family competes favorably with multiplexed parallel turbo codes for nonergodic channels.
Resumo:
Exact closed-form expressions are obtained for the outage probability of maximal ratio combining in η-μ fadingchannels with antenna correlation and co-channel interference. The scenario considered in this work assumes the joint presence of background white Gaussian noise and independent Rayleigh-faded interferers with arbitrary powers. Outage probability results are obtained through an appropriate generalization of the moment-generating function of theη-μ fading distribution, for which new closed-form expressions are provided.
Resumo:
We show how to build full-diversity product codes under both iterative encoding and decoding over non-ergodic channels, in presence of block erasure and block fading. The concept of a rootcheck or a root subcode is introduced by generalizing the same principle recently invented for low-density parity-check codes. We also describe some channel related graphical properties of the new family of product codes, a familyreferred to as root product codes.
Resumo:
The spectral efficiency achievable with joint processing of pilot and data symbol observations is compared with that achievable through the conventional (separate) approach of first estimating the channel on the basis of the pilot symbols alone, and subsequently detecting the datasymbols. Studied on the basis of a mutual information lower bound, joint processing is found to provide a non-negligible advantage relative to separate processing, particularly for fast fading. It is shown that, regardless of the fading rate, only a very small number of pilot symbols (at most one per transmit antenna and per channel coherence interval) shouldbe transmitted if joint processing is allowed.
Resumo:
This paper derives approximations allowing the estimation of outage probability for standard irregular LDPC codes and full-diversity Root-LDPC codes used over nonergodic block-fading channels. Two separate approaches are discussed: a numerical approximation, obtained by curve fitting, for both code ensembles, and an analytical approximation for Root-LDPC codes, obtained under the assumption that the slope of the iterative threshold curve of a given code ensemble matches the slope of the outage capacity curve in the high-SNR regime.
Resumo:
The optimization of the pilot overhead in wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-usedblock fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with thenormalized Doppler frequency multiplied by the number of transmit antennas.
Resumo:
This paper presents our investigation on iterativedecoding performances of some sparse-graph codes on block-fading Rayleigh channels. The considered code ensembles are standard LDPC codes and Root-LDPC codes, first proposed in and shown to be able to attain the full transmission diversity. We study the iterative threshold performance of those codes as a function of fading gains of the transmission channel and propose a numerical approximation of the iterative threshold versus fading gains, both both LDPC and Root-LDPC codes.Also, we show analytically that, in the case of 2 fading blocks,the iterative threshold root of Root-LDPC codes is proportional to (α1 α2)1, where α1 and α2 are corresponding fading gains.From this result, the full diversity property of Root-LDPC codes immediately follows.
Resumo:
This paper investigates the asymptotic uniform power allocation capacity of frequency nonselective multiple-inputmultiple-output channels with fading correlation at either thetransmitter or the receiver. We consider the asymptotic situation,where the number of inputs and outputs increase without boundat the same rate. A simple uniparametric model for the fadingcorrelation function is proposed and the asymptotic capacity perantenna is derived in closed form. Although the proposed correlationmodel is introduced only for mathematical convenience, itis shown that its shape is very close to an exponentially decayingcorrelation function. The asymptotic expression obtained providesa simple and yet useful way of relating the actual fadingcorrelation to the asymptotic capacity per antenna from a purelyanalytical point of view. For example, the asymptotic expressionsindicate that fading correlation is more harmful when arising atthe side with less antennas. Moreover, fading correlation does notinfluence the rate of growth of the asymptotic capacity per receiveantenna with high Eb /N0.
Resumo:
This paper applies random matrix theory to obtain analytical characterizations of the capacity of correlated multiantenna channels. The analysis is not restricted to the popular separable correlation model, but rather it embraces a more general representation that subsumesmost of the channel models that have been treated in the literature. For arbitrary signal-to-noise ratios (SNR), the characterization is conducted in the regime of large numbers of antennas. For the low- and high-SNR regions, in turn, we uncover compact capacity expansions that are valid for arbitrary numbers of antennas and that shed insight on how antenna correlation impacts the tradeoffs between power, bandwidth and rate.
Resumo:
We characterize the capacity-achieving input covariance for multi-antenna channels known instantaneously at the receiver and in distribution at the transmitter. Our characterization, valid for arbitrary numbers of antennas, encompasses both the eigenvectors and the eigenvalues. The eigenvectors are found for zero-mean channels with arbitrary fading profiles and a wide range of correlation and keyhole structures. For the eigenvalues, in turn, we present necessary and sufficient conditions as well as an iterative algorithm that exhibits remarkable properties: universal applicability, robustness and rapid convergence. In addition, we identify channel structures for which an isotropic input achieves capacity.
Resumo:
Wireless “MIMO” systems, employing multiple transmit and receive antennas, promise a significant increase of channel capacity, while orthogonal frequency-division multiplexing (OFDM) is attracting a good deal of attention due to its robustness to multipath fading. Thus, the combination of both techniques is an attractive proposition for radio transmission. The goal of this paper is the description and analysis of a new and novel pilot-aided estimator of multipath block-fading channels. Typical models leading to estimation algorithms assume the number of multipath components and delays to be constant (and often known), while their amplitudes are allowed to vary with time. Our estimator is focused instead on the more realistic assumption that the number of channel taps is also unknown and varies with time following a known probabilistic model. The estimation problem arising from these assumptions is solved using Random-Set Theory (RST), whereby one regards the multipath-channel response as a single set-valued random entity.Within this framework, Bayesian recursive equations determine the evolution with time of the channel estimator. Due to the lack of a closed form for the solution of Bayesian equations, a (Rao–Blackwellized) particle filter (RBPF) implementation ofthe channel estimator is advocated. Since the resulting estimator exhibits a complexity which grows exponentially with the number of multipath components, a simplified version is also introduced. Simulation results describing the performance of our channel estimator demonstrate its effectiveness.
Resumo:
The analysis of the multiantenna capacity in the high-SNR regime has hitherto focused on the high-SNR slope (or maximum multiplexing gain), which quantifies the multiplicative increase as function of the number of antennas. This traditional characterization is unable to assess the impact of prominent channel features since, for a majority of channels, the slope equals the minimum of the number of transmit and receive antennas. Furthermore, a characterization based solely on the slope captures only the scaling but it has no notion of the power required for a certain capacity. This paper advocates a more refined characterization whereby, as function of SNRjdB, the high-SNR capacity is expanded as an affine function where the impact of channel features such as antenna correlation, unfaded components, etc, resides in the zero-order term or power offset. The power offset, for which we find insightful closed-form expressions, is shown to play a chief role for SNR levels of practical interest.
Resumo:
The simultaneous use of multiple transmit and receive antennas can unleash very large capacity increases in rich multipath environments. Although such capacities can be approached by layered multi-antenna architectures with per-antenna rate control, the need for short-term feedback arises as a potential impediment, in particular as the number of antennas—and thus the number of rates to be controlled—increases. What we show, however, is that the need for short-term feedback in fact vanishes as the number of antennas and/or the diversity order increases. Specifically, the rate supported by each transmit antenna becomes deterministic and a sole function of the signal-to-noise, the ratio of transmit and receive antennas, and the decoding order, all of which are either fixed or slowly varying. More generally, we illustrate -through this specific derivation— the relevance of some established random CDMA results to the single-user multi-antenna problem.