44 resultados para NO oxidation to NO2
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Few studies have used longitudinal ultrasound measurements to assess the effect of traffic-related air pollution on fetal growth.Objective: We examined the relationship between exposure to nitrogen dioxide (NO2) and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] on fetal growth assessed by 1,692 ultrasound measurements among 562 pregnant women from the Sabadell cohort of the Spanish INMA (Environment and Childhood) study.Methods: We used temporally adjusted land-use regression models to estimate exposures to NO2 and BTEX. We fitted mixed-effects models to estimate longitudinal growth curves for femur length (FL), head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), and estimated fetal weight (EFW). Unconditional and conditional SD scores were calculated at 12, 20, and 32 weeks of gestation. Sensitivity analyses were performed considering time–activity patterns during pregnancy.Results: Exposure to BTEX from early pregnancy was negatively associated with growth in BPD during weeks 20–32. None of the other fetal growth parameters were associated with exposure to air pollution during pregnancy. When considering only women who spent 2 hr/day in nonresidential outdoor locations, effect estimates were stronger and statistically significant for the association between NO2 and growth in HC during weeks 12–20 and growth in AC, BPD, and EFW during weeks 20–32.Conclusions: Our results lend some support to an effect of exposure to traffic-related air pollutants from early pregnancy on fetal growth during mid-pregnancy.
Resumo:
Bakery products such as biscuits, cookies, and pastries represent a good medium for iron fortification in food products, since they are consumed by a large proportion of the population at risk of developing iron deficiency anemia, mainly children. The drawback, however, is that iron fortification can promote oxidation. To assess the extent of this, palm oil added with heme iron and different antioxidants was used as a model for evaluating the oxidative stability of some bakery products, such as baked goods containing chocolate. The palm oil samples were heated at 220°C for 10 min to mimic the conditions found during a typical baking processing. The selected antioxidants were a free radical scavenger (tocopherol extract (TE), 0 and 500 mg/kg), an oxygen scavenger (ascorbyl palmitate (AP), 0 and 500 mg/kg), and a chelating agent (citric acid (CA), 0 and 300 mg/kg). These antioxidants were combined using a factorial design and were compared to a control sample, which was not supplemented with antioxidants. Primary (peroxide value and lipid hydroperoxide content) and secondary oxidation parameters (p-anisidine value, p-AnV) were monitored over a period of 200 days in storage at room temperature. The combination of AP and CA was the most effective treatment in delaying the onset of oxidation. TE was not effective in preventing oxidation. The p-AnV did not increase during the storage period, indicating that this oxidation marker was not suitable for monitoring oxidation in this model.
Resumo:
Bakery products such as biscuits, cookies, and pastries represent a good medium for iron fortification in food products, since they are consumed by a large proportion of the population at risk of developing iron deficiency anemia, mainly children. The drawback, however, is that iron fortification can promote oxidation. To assess the extent of this, palm oil added with heme iron and different antioxidants was used as a model for evaluating the oxidative stability of some bakery products, such as baked goods containing chocolate. The palm oil samples were heated at 220°C for 10 min to mimic the conditions found during a typical baking processing. The selected antioxidants were a free radical scavenger (tocopherol extract (TE), 0 and 500 mg/kg), an oxygen scavenger (ascorbyl palmitate (AP), 0 and 500 mg/kg), and a chelating agent (citric acid (CA), 0 and 300 mg/kg). These antioxidants were combined using a factorial design and were compared to a control sample, which was not supplemented with antioxidants. Primary (peroxide value and lipid hydroperoxide content) and secondary oxidation parameters (p-anisidine value, p-AnV) were monitored over a period of 200 days in storage at room temperature. The combination of AP and CA was the most effective treatment in delaying the onset of oxidation. TE was not effective in preventing oxidation. The p-AnV did not increase during the storage period, indicating that this oxidation marker was not suitable for monitoring oxidation in this model.
Resumo:
The presence of cavities filled with new minerals in carbonate rocks is a common feature in oil reservoirs and lead-zinc deposits. Since groundwater equilibrates rapidly with carbonates, the presence of dissolution cavities in deep carbonate host rocks is a paradox. Two alternative geochemical processes have been proposed to dissolve carbonates at depth: hydrogen sulfide oxidation to sulfuric acid, and metal sulfide precipitation. With the aid of geochemical modeling we show that mixing two warm solutions saturated with carbonate results in a new solution that dissolves limestone. Variations in the proportion of the end-member fluids can also form a supersaturated mixture and fill the cavity with a new generation of carbonate. Mixing is in general more effective in dissolving carbonates than the aforementioned processes. Moreover, mixing is consistent with the wide set of textures and mineral proportions observed in cavity infillings.
Resumo:
WO3 nanocrystalline powders were obtained from tungstic acid following a sol-gel process. Evolution of structural properties with annealing temperature was studied by X-ray diffraction and Raman spectroscopy. These structural properties were compared with those of WO3 nanopowders obtained by the most common process of pyrolysis of ammonium paratungstate, usually used in gas sensors applications. Sol-gel WO3 showed a high sensor response to NO2 and low response to CO and CH4. The response of these sensor devices was compared with that of WO3 obtained from pyrolysis, showing the latter a worse sensor response to NO2. Influence of operating temperature, humidity, and film thickness on NO2 detection was studied in order to improve the sensing conditions to this gas.
Resumo:
A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.
Resumo:
Report for the scientific sojourn carried out at the Model-based Systems and Qualitative Reasoning Group (Technical University of Munich), from September until December 2005. Constructed wetlands (CWs), or modified natural wetlands, are used all over the world as wastewater treatment systems for small communities because they can provide high treatment efficiency with low energy consumption and low construction, operation and maintenance costs. Their treatment process is very complex because it includes physical, chemical and biological mechanisms like microorganism oxidation, microorganism reduction, filtration, sedimentation and chemical precipitation. Besides, these processes can be influenced by different factors. In order to guarantee the performance of CWs, an operation and maintenance program must be defined for each Wastewater Treatment Plant (WWTP). The main objective of this project is to provide a computer support to the definition of the most appropriate operation and maintenance protocols to guarantee the correct performance of CWs. To reach them, the definition of models which represent the knowledge about CW has been proposed: components involved in the sanitation process, relation among these units and processes to remove pollutants. Horizontal Subsurface Flow CWs are chosen as a case study and the filtration process is selected as first modelling-process application. However, the goal is to represent the process knowledge in such a way that it can be reused for other types of WWTP.
Resumo:
Durante las primeras décadas del s. XX se contempló un importante aumento de las enfermedades coronarias, este hecho estimuló la investigación sobre las causas de dichas enfermedades. En 1978, y para investigar este fenómeno se inició el estudio REGICOR en el Hospital Josep Trueta de Girona. En el s. XX también se contempló un creciente problema de contaminación de las atmósferas urbanas, esto hizo que diferentes científicos estudiaran las relaciones entre las enfermedades coronarias y la contaminación atmosférica en áreas urbanas (Godish, 1997; Krupa & Legge, 2000; Brook et al., 2004 y Krewski et al., 2004). El proyecto realizado está situado en el contexto del primer estudio realizado en España que investiga los efectos sobre la salud de la contaminación atmosférica (REGICOR 2000-AIR). En el proyecto se pretende investigar la influencia de diferentes factores (distancia de los tubos a la calle, altura de los tubos, anchura de la calle, tráfico y densidad de tráfico) sobre la contaminación atmosférica de las ciudades de Girona y Salt, con el fin de poder caracterizar lo mejor posible la exposición a contaminación atmosférica. Para este fin se utilizará el NO2 como marcador de contaminación atmosférica y se seleccionaran varios puntos de muestreo en las dos ciudades dónde se pondrán captadores de NO2 para la medición de dicha contaminación. Después, y mediante un análisis estadístico, se podrá determinar la influencia de los factores en la variación de concentración de NO2 en el área seleccionada.
Resumo:
The development, validation, comparison and evaluation of analytical methods for marine toxins rely on the availability of toxic material. Within the project JACUMAR PSP, our interest is mainly focused on autochthonous bivalve species with the toxic profile of Alexandrium minutum, since this is the principal species involved regionally in PSP outbreaks. Mussels and oysters were exposed during few days in the harbor of Vilanova i la Geltrú, to blooms reaching a maximum A. minutum concentration of 200,000 cells L-1 in 2008, and 40,000 and 800,000 cells L-1, in 2009. Mussels, oysters and clams were exposed to one bloom of 22,000 cells L-1 in the harbor of Cambrils in 2009. In all situations higher toxic levels analyzed by HPLC-FD with postcolumn oxidation were observed in mussels (i.e. 1,200-2,500 μg eq. STX kg-1) than in oysters (i.e. 60-800 μg eq. STX kg-1) exposed to the same bloom. Blooms with higher concentrations of A. minutum did not correspond to higher levels of PSP toxins in bivalves. These differences may be explained by differences in A. minutum population dynamics, toxin production or in the physiological state or behaviour of shellfish. These results confirm that mussels concentrate more PSP toxins from A. minutum than oysters and clams.
Resumo:
The classical description of Si oxidation given by Deal and Grove has well-known limitations for thin oxides (below 200 Ã). Among the large number of alternative models published so far, the interfacial emission model has shown the greatest ability to fit the experimental oxidation curves. It relies on the assumption that during oxidation Si interstitials are emitted to the oxide to release strain and that the accumulation of these interstitials near the interface reduces the reaction rate there. The resulting set of differential equations makes it possible to model diverse oxidation experiments. In this paper, we have compared its predictions with two sets of experiments: (1) the pressure dependence for subatmospheric oxygen pressure and (2) the enhancement of the oxidation rate after annealing in inert atmosphere. The result is not satisfactory and raises serious doubts about the model’s correctness
Resumo:
Background: There is growing evidence that traffic-related air pollution reduces birth weight. Improving exposure assessment is a key issue to advance in this research area.Objective: We investigated the effect of prenatal exposure to traffic-related air pollution via geographic information system (GIS) models on birth weight in 570 newborns from the INMA (Environment and Childhood) Sabadell cohort.Methods: We estimated pregnancy and trimester-specific exposures to nitrogen dioxide and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] by using temporally adjusted land-use regression (LUR) models. We built models for NO2 and BTEX using four and three 1-week measurement campaigns, respectively, at 57 locations. We assessed the relationship between prenatal air pollution exposure and birth weight with linear regression models. We performed sensitivity analyses considering time spent at home and time spent in nonresidential outdoor environments during pregnancy.Results: In the overall cohort, neither NO2 nor BTEX exposure was significantly associated with birth weight in any of the exposure periods. When considering only women who spent < 2 hr/day in nonresidential outdoor environments, the estimated reductions in birth weight associated with an interquartile range increase in BTEX exposure levels were 77 g [95% confidence interval (CI), 7–146 g] and 102 g (95% CI, 28–176 g) for exposures during the whole pregnancy and the second trimester, respectively. The effects of NO2 exposure were less clear in this subset.Conclusions: The association of BTEX with reduced birth weight underscores the negative role of vehicle exhaust pollutants in reproductive health. Time–activity patterns during pregnancy complement GIS-based models in exposure assessment.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders. Antioxid. Redox Signal. 00, 000000.
Resumo:
FSP27 (CIDEC in humans) is a protein associated with lipid droplets that downregulates the fatty acid oxidation (FAO) rate when it is overexpressed. However, little is known about its physiological role in liver. Here, we show that fasting regulates liver expression of Fsp27 in a time-dependent manner. Thus, during the initial stages of fasting a maximal induction of 800-fold was achieved, while during the later phase of fasting, Fsp27 expression decreased. The early response to fasting can be explained by a canonical PKA-CREB-CRTC2 signaling pathway since: i) CIDEC expression was induced by forskolin, ii) Fsp27 promoter activity was increased by CREB, and iii) Fsp27 expression was upregulated in the liver of Sirt1 knockout animals. Interestingly, pharmacological (etomoxir) or genetic (Hmgcs2 interference) inhibition of the FAO rate increases the in vivo expression of Fsp27 during fasting. Similarly, CIDEC expression was upregulated in HepG2 cells by either etomoxir or HMGCS2 interference. Our data indicate that there is a kinetic mechanism of auto-regulation between short- and long-term fasting, by which free fatty acids delivered to the liver during early fasting are accumulated/exported by FSP27/CIDEC, while over longer periods of fasting they are degraded in the mitochondria through the carnitine palmitoyl transferase (CPT) system.
Resumo:
The oxidation of GaAs and AlGaAs targets subjected to O2+ bombardment has been analyzed, using in situ x¿ray photoelectron spectroscopy, as a function of time until steady state is reached. The oxides formed by the O2+ bombardment have been characterized in terms of composition and binding energy. A strong energy and angular dependence for the oxidation of As relative to Ga is found. Low energies as well as near normal angles of incidence favor the oxidation of As. The difference between Ga and As can be explained in terms of the formation enthalpy for the oxide and the excess supply of oxygen. In an AlGaAs target the Al is very quickly completely oxidized irrespective of the experimental conditions. The steady state composition of the altered layers show in all cases a preferential removal of As.
Resumo:
Ammonia gas detection by pure and catalytically modified WO3 based gas sensor was analysed. The sensor response of pure WO3 to NH3 was not only rather low but also presented an abnormal behaviour, probably due to the unselective oxidation of ammonia to NOx. Copper and vanadium were introduced in different concentrations and the resulting material was annealed at different temperatures in order to improve the sensing properties for NH3 detection. The introduction of copper and vanadium as catalytic additives improved the response to NH3 and also eliminated the abnormal behaviour. Possible mechanisms of NH3 reaction over these materials are discussed. Sensor responses to other gases like NO2 or CO and the interference of humidity on ammonia detection were also analysed so as to choose the best sensing element.