18 resultados para NO and synthase
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Glycogen-depleting exercise can lead to supercompensation of muscle glycogen stores, but the biochemical mechanisms of this phenomenon are still not completely understood. Methods: Using chronic low-frequency stimulation (CLFS) as an exercise model, the tibialis anterior muscle of rabbits was stimulated for either 1 or 24 hours, inducing a reduction in glycogen of 90% and 50% respectively. Glycogen recovery was subsequently monitored during 24 hours of rest. Results: In muscles stimulated for 1 hour, glycogen recovered basal levels during the rest period. However, in those stimulated for 24 hours, glycogen was supercompensated and its levels remained 50% higher than basal levels after 6 hours of rest, although the newly synthesized glycogen had fewer branches. This increase in glycogen correlated with an increase in hexokinase-2 expression and activity, a reduction in the glycogen phosphorylase activity ratio and an increase in the glycogen synthase activity ratio, due to dephosphorylation of site 3a, even in the presence of elevated glycogen stores. During supercompensation there was also an increase in 59-AMP-activated protein kinase phosphorylation, correlating with a stable reduction in ATP and total purine nucleotide levels. Conclusions: Glycogen supercompensation requires a coordinated chain of events at two levels in the context of decreased cell energy balance: First, an increase in the glucose phosphorylation capacity of the muscle and secondly, control of the enzymes directly involved in the synthesis and degradation of the glycogen molecule. However, supercompensated glycogen has fewer branches.
Resumo:
Normalization of the increased vascular nitric oxide (NO) generation with low doses of NG-nitro-L-arginine methyl ester (L-NAME) corrects the hemodynamic abnormalities of cirrhotic rats with ascites. We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion. Rats with carbon tetrachloride-induced cirrhosis and ascites were investigated using balance studies. The cirrhotic rats were separated into two groups, one receiving 0.5 mg/kg per day of L-NAME (CIR-NAME) during 7 d, whereas the other group (CIR) was administrated the same volume of vehicle. Two other groups of rats were used as controls, one group treated with L-NAME and another group receiving the same volume of vehicle. Sodium and water excretion was measured on days 0 and 7. On day 8, blood samples were collected for electrolyte and hormone measurements, and aorta and mesenteric arteries were harvested for cGMP determination and nitric oxide synthase (NOS) immunoblotting. Aortic cGMP and eNOS protein expression in the aorta and mesenteric artery were increased in CIR as compared with CIR-NAME. Both cirrhotic groups had a similar decrease in sodium excretion on day 0 (0.7 versus 0.6 mmol per day, NS) and a positive sodium balance (+0.9 versus +1.2 mmol per day, NS). On day 7, CIR-NAME rats had an increase in sodium excretion as compared with the CIR rats (sodium excretion: 2.4 versus 0.7 mmol per day, P < 0.001) and a negative sodium balance (-0.5 versus +0.8 mmol per day, P < 0.001). The excretion of a water load was also increased after L-NAME administration (from 28+/-5% to 65+/-7, P < 0.05). Plasma renin activity, aldosterone and arginine vasopressin were also significantly decreased in the CIR-NAME, as compared with the CIR rats. The results thus indicate that normalization of aortic cGMP and eNOS protein expression in vascular tissue is associated with increased sodium and water excretion in cirrhotic rats with ascites.
Resumo:
Abstract Background: Hypoxia-mediated HIF-1a stabilization and NF-kB activation play a key role in carcinogenesis by fostering cancer cell survival, angiogenesis and tumor invasion. Gangliosides are integral components of biological membranes with an increasingly recognized role as signaling intermediates. In particular, ganglioside GD3 has been characterized as a proapoptotic lipid effector by promoting cell death signaling and suppression of survival pathways. Thus, our aim was to analyze the role of GD3 in hypoxia susceptibility of hepatocarcinoma cells and in vivo tumor growth. Methodology/Principal Findings: We generated and characterized a human hepatocarcinoma cell line stably expressing GD3 synthase (Hep3B-GD3), which catalyzes the synthesis of GD3 from GM3. Despite increased GD3 levels (2-3 fold), no significant changes in cell morphology or growth were observed in Hep3B-GD3 cells compared to wild type Hep3B cells under normoxia. However, exposure of Hep3B-GD3 cells to hypoxia (2% O2) enhanced reactive oxygen species (ROS) generation, resulting in decreased cell survival, with similar findings observed in Hep3B cells exposed to increasing doses of exogenous GD3. In addition, hypoxia-induced c-Src phosphorylation at tyrosine residues, NF-kB activation and subsequent expression of Mn-SOD were observed in Hep3B cells but not in Hep3B-GD3 cells. Moreover, MnTBAP, an antioxidant with predominant SOD mimetic activity, reduced ROS generation, protecting Hep3B-GD3 cells from hypoxia-induced death. Finally, lower tumor growth, higher cell death and reduced Mn-SOD expression were observed in Hep3B-GD3 compared to Hep3B tumor xenografts. Conclusion: These findings underscore a role for GD3 in hypoxia susceptibility by disabling the c-Src/NF-kB survival pathway resulting in lower Mn-SOD expression, which may be of relevance in hepatocellular carcinoma therapy.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
We determined NGF involvement in MMCs and colonic motor alterations in an ovalbumin (OVA)-induced gut dysfunction model in rats. Animals received OVA (6 weeks), with/without simultaneous K252a (TrkA antagonist) treatment. MMCs, rat mast cell protease II (RMCPII) levels and colonic contractility in vitro were assessed. OVA increased MMC density and RMCPII concentration. Spontaneous contractility was similar in both groups and inhibited by K252a. Carbachol responses were increased by OVA in a K252a-independent manner. NO-synthase inhibition increased spontaneous activity in OVA-treated animals in a K252a-dependent manner. These observations support an involvement of NGF in the functional changes observed in this model.
Resumo:
Els isòtops estables com a traçadors de la cadena alimentària, s'han utilitzat per caracteritzar la relació entre els consumidors i els seus aliments, ja que el fraccionament isotòpic implica una discriminació en contra de certs isòtops. Però les anàlisis d'isòtops estables (SIA), també es poden dur a terme en peixos cultivats amb dietes artificials, com la orada (Sparus aurata), la especie más cultivada en el Mediterráneo. Canvis en l'abundància natural d'isòtops estables (13C i 15N) en els teixits i les seves reserves poden reflectir els canvis en l'ús i reciclatge dels nutrients ja que els enzims catabòlics implicats en els processos de descarboxilació i desaminació mostren una preferència pels isòtops més lleugers. Per tant, aquestes anàlisis ens poden proporcionar informació útil sobre l'estat nutricional i metabòlic dels peixos. L'objectiu d'aquest projecte va ser determinar la capacitat dels isòtops estables per ser utilitzats com a marcadors potencials de la capacitat de creixement i condicions de cria de l'orada. En aquest sentit, les anàlisis d'isòtops estables s'han combinat amb altres metabòlics (activitats citocrom-c-oxidasa, COX, i citrat sintasa, CS) i els paràmetres de creixement (ARN/ADN). El conjunt de resultats obtinguts en els diferents estudis realitzats en aquest projecte demostra que el SIA, en combinació amb altres paràmetres metabòlics, pot servir com una eina eficaç per discriminar els peixos amb millor potencial de creixement, així com a marcador sensible de l'estat nutricional i d'engreix. D'altra banda, la combinació de l'anàlisi d'isòtops estables amb les eines emergents, com ara tècniques de proteòmica (2D-PAGE), ens proporciona nous coneixements sobre els canvis metabòlics que ocorren en els músculs dels peixos durant l‟increment del creixement muscular induït per l'exercici.
Resumo:
: To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*4001 carriage with HIV lipodystrophy syndrome (HALS). 336 patients, 187 with HALS and 149 without HALS, and 72 controls were recruited. HALS was associated with the presence of a low expression, thymidylate synthase (TS) genotype polymorphism. Methylene-tetrahydrofolate reductase (MTHFR) gene polymorphisms and HLA-B*4001 carriage were not associated with HALS or d4T-TP intracellular levels. In conclusion HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*4001 carriage.
Resumo:
Background. Microglia and astrocytes respond to homeostatic disturbances with profound changes of gene expression. This response, known as glial activation or neuroinflammation, can be detrimental to the surrounding tissue. The transcription factor CCAAT/enhancer binding protein ß (C/EBPß) is an important regulator of gene expression in inflammation but little is known about its involvement in glial activation. To explore the functional role of C/EBPß in glial activation we have analyzed pro-inflammatory gene expression and neurotoxicity in murine wild type and C/EBPß-null glial cultures. Methods. Due to fertility and mortality problems associated with the C/EBPß-null genotype we developed a protocol to prepare mixed glial cultures from cerebral cortex of a single mouse embryo with high yield. Wild-type and C/EBPß-null glial cultures were compared in terms of total cell density by Hoechst-33258 staining; microglial content by CD11b immunocytochemistry; astroglial content by GFAP western blot; gene expression by quantitative real-time PCR, western blot, immunocytochemistry and Griess reaction; and microglial neurotoxicity by estimating MAP2 content in neuronal/microglial cocultures. C/EBPß DNA binding activity was evaluated by electrophoretic mobility shift assay and quantitative chromatin immunoprecipitation. Results. C/EBPß mRNA and protein levels, as well as DNA binding, were increased in glial cultures by treatment with lipopolysaccharide (LPS) or LPS + interferon ¿ (IFN¿). Quantitative chromatin immunoprecipitation showed binding of C/EBPß to pro-inflammatory gene promoters in glial activation in a stimulus- and gene-dependent manner. In agreement with these results, LPS and LPS+IFN¿ induced different transcriptional patterns between pro-inflammatory cytokines and NO synthase-2 genes. Furthermore, the expressions of IL-1ß and NO synthase-2, and consequent NO production, were reduced in the absence of C/EBPß. In addition, neurotoxicity elicited by LPS+IFN¿-treated microglia co-cultured with neurons was completely abolished by the absence of C/EBPß in microglia.
Resumo:
Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.
Resumo:
Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are drugs widely abused in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of 7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, 7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to 7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on 7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on 7 and heteromeric nAChR populations have been found.
Resumo:
Neurodegeneration is a complex process involving different cell types andneurotransmitters. A common characteristic of neurodegenerative disorders such asAlzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis, Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS) is the occurrence of a neuroinflammatoryreaction in which cellular processes involving glial cells (mainly microglia and astrocytes) and T cells are activated in response to neuronal death. This inflammatory reaction has recently received attention as an unexpected potential target for the treatment of these diseases.Microglial cells have a mesenchymal origin, invade the central nervous system (CNS)prenatally (Chan et al., 2007b) and are the resident macrophages in the CNS (Ransohoff &Perry, 2009). They comprise approximately 10-20% of adult glia and serve as the CNS innateimmune system. In neurodegenerative diseases, microglia is activated by misfoldedproteins. In the case of AD, amyloid- (A ) peptides accumulate extracellularly and activate the microglia locally. In the case of PD, ALS and HD, the misfolded proteins accumulate intracellularly but are still associated with activation of the microglia (Perry et al., 2010). Reactive microglia in the substantia nigra and striatum of PD brains have been described, and increased levels of proinflammatory cytokines and inducible nitric oxide synthase havebeen detected in these brain regions, providing evidence of a local inflammatory reaction (Hirsch & Hunot, 2009). The injection of lipopolysaccharide (a potent microglia activator) into the substantia nigra produces microglial activation and the death of dopaminergic cells. These findings support the hypothesis that microglial activation and neuroinflammationcontribute to PD pathogenesis (Herrera et al., 2000)...
Resumo:
Background/Aim: Lipoprotein lipase (LPL) is the main enzyme responsible for the distribution of circulating triacylglycerides in tissues. Its regulation via release from active sites in the vascular endothelium is poorly understood. In a previous study we reported that in response to acute immobilization (IMMO), LPL activity rapidly increases in plasma and decreases in white adipose tissue (WAT) in rats. In other stress situations IMMO triggers a generalized increase in nitric oxide (NO) production. Methods/Results: Here we demonstrate that in rats: 1) in vivo acute IMMO rapidly increases NO concentrations in plasma 2) during acute IMMO the WAT probably produces NO via the endothelial isoform of nitric oxide synthase (eNOS) from vessels, and 3) epididymal WAT perfused in situ with an NO donor rapidly releases LPL from the endothelium. Conclusion: We propose the following chain of events: stress stimulus / rapid increase of NO production in WAT (by eNOS) / release of LPL from the endothelium in WAT vessels. This chain of events could be a new mechanism that promotes the rapid decrease of WAT LPL activity in response to a physiological stimulus.
Resumo:
Background PPP1R6 is a protein phosphatase 1 glycogen-targeting subunit (PP1-GTS) abundant in skeletal muscle with an undefined metabolic control role. Here PPP1R6 effects on myotube glycogen metabolism, particle size and subcellular distribution are examined and compared with PPP1R3C/PTG and PPP1R3A/GM. Results PPP1R6 overexpression activates glycogen synthase (GS), reduces its phosphorylation at Ser-641/0 and increases the extracted and cytochemically-stained glycogen content, less than PTG but more than GM. PPP1R6 does not change glycogen phosphorylase activity. All tested PP1-GTS-cells have more glycogen particles than controls as found by electron microscopy of myotube sections. Glycogen particle size is distributed for all cell-types in a continuous range, but PPP1R6 forms smaller particles (mean diameter 14.4 nm) than PTG (36.9 nm) and GM (28.3 nm) or those in control cells (29.2 nm). Both PPP1R6- and GM-derived glycogen particles are in cytosol associated with cellular structures; PTG-derived glycogen is found in membrane- and organelle-devoid cytosolic glycogen-rich areas; and glycogen particles are dispersed in the cytosol in control cells. A tagged PPP1R6 protein at the C-terminus with EGFP shows a diffuse cytosol pattern in glucose-replete and -depleted cells and a punctuate pattern surrounding the nucleus in glucose-depleted cells, which colocates with RFP tagged with the Golgi targeting domain of β-1,4-galactosyltransferase, according to a computational prediction for PPP1R6 Golgi location. Conclusions PPP1R6 exerts a powerful glycogenic effect in cultured muscle cells, more than GM and less than PTG. PPP1R6 protein translocates from a Golgi to cytosolic location in response to glucose. The molecular size and subcellular location of myotube glycogen particles is determined by the PPP1R6, PTG and GM scaffolding.
Resumo:
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.
Resumo:
Aculeacin A is a lipopeptide that inhibits ,B-glucan synthesis in yeasts. A number of Saccharomyces cerevisiae mutants resistant to this antibiotic were isolated, and four loci (ACRI, ACR2, ACR3, and ACR4) whose products are involved in the sensitivity to aculeacin A of yeast ceils were defined. Mutants containing mutations in the four loci were also resistant to echinocandin B, another member of this lipopeptide family of antibiotics. In contrast, acri, acr3, and acr4 mutants were resistant to papulacandin B (an antibiotic containing a disaccharide linked to two fatty acid chains that also inhibits P-glucan synthesis), but acr2 mutants were susceptible'to this antibiotic. This result defines common and specific steps in the entry and action of aculeacin A and papulacandin B. The analysis of double mutants revealed an epistatic effect of the acr2 mutation on the other three mutations. Cell walls of the four different mutants did not show significant alterations in composition with respect to the parental strain, and in vitro glucan synthase activity was also unaffected. However, cell surface hydrophobicity in three of the mutants was considerably decreased with respect to the parental strain.