19 resultados para Multicriteria Decision Support Systems
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Real-time predictions are an indispensable requirement for traffic management in order to be able to evaluate the effects of different available strategies or policies. The combination of predicting the state of the network and the evaluation of different traffic management strategies in the short term future allows system managers to anticipate the effects of traffic control strategies ahead of time in order to mitigate the effect of congestion. This paper presents the current framework of decision support systems for traffic management based on short and medium-term predictions and includes some reflections on their likely evolution, based on current scientific research and the evolution of the availability of new types of data and their associated methodologies.
Resumo:
Water resources management, as also water service provision projects in developing countries have difficulties to take adequate decisions due to scarce reliable information, and a lack of proper information managing. Some appropriate tools need to be developed in order to improve decision making to improve water management and access of the poorest, through the design of Decision Support Systems (DSS). On the one side, a DSS for developing co-operation projects on water access improvement has been developed. Such a tool has specific context constrains (structure of the system, software requirements) and needs (Logical Framework Approach monitoring, organizational-learning, accountability and evaluation) that shall be considered for its design. Key aspects for its successful implementation have appeared to be a participatory design of the system and support of the managerial positions at the inception phase. A case study in Tanzania was conducted, together with the Spanish NGO ONGAWA – Ingeniería para el Desarrollo. On the other side, DSS are required also to improve decision making on water management resources in order to achieve a sustainable development that not only improves the living conditions of the population in developing countries, but that also does not hinder opportunities of the poorest on those context. A DSS made to fulfil these requirements shall be using information from water resources modelling, as also on the environment and the social context. Through the research, a case study has been conducted in the Central Rift Valley of Ethiopia, an endhorreic basin 160 km south of Addis Ababa. There, water has been modelled using ArcSWAT, a physically based model which can assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time. Moreover, governance on water and environment as also the socioeconomic context have been studied.
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
Immobile location-allocation (LA) problems is a type of LA problem that consists in determining the service each facility should offer in order to optimize some criterion (like the global demand), given the positions of the facilities and the customers. Due to the complexity of the problem, i.e. it is a combinatorial problem (where is the number of possible services and the number of facilities) with a non-convex search space with several sub-optimums, traditional methods cannot be applied directly to optimize this problem. Thus we proposed the use of clustering analysis to convert the initial problem into several smaller sub-problems. By this way, we presented and analyzed the suitability of some clustering methods to partition the commented LA problem. Then we explored the use of some metaheuristic techniques such as genetic algorithms, simulated annealing or cuckoo search in order to solve the sub-problems after the clustering analysis
Resumo:
Control of brown spot of pear requires fungicide treatments of pear trees during the growing season. Scheduling fungicide sprays with the Brown spot of pear forecasting system (BSPcast) provides significantfungicide savings but does not increase the efficacy of disease control. Modifications in BSPcast wereintroduced in order to increase system performance. The changes consisted of: (1) the use of a daily infectionrisk (Rm≥0.2) instead of the 3-day cumulative risk (CR≥0.4) to guide the fungicide scheduling, and (2) theinclusion of the effect of relative humidity during interrupted wetness periods. Trials were performed during2 years in an experimental pear orchard in Spain. The modifications introduced did not result in increaseddisease control efficacy, compared with the original BSPcast system. In one year, no reduction in the numberof fungicide applications was obtained using the modified BSPcast system in comparison to the original system, but in the second year the number of treatments was reduced from 15 to 13. The original BSPcast model overestimated the daily infection risk in 6.5% of days with wetness periods with low relative humidity during the wetness interruption, and in these cases the modified version was more adequate
Resumo:
El principal objectiu del projecte consisteix en desenvolupar l’anàlisi, disseny,desenvolupament i implementació d’un sistema d’ajuda a la decisió (SAD) basat en elconeixement pel control remot i la supervisió de l’operació integrada d’estacionsdepuradores BRM (bioreactor de membranes) pe ra la depuració d’aigües residuals ambexigències de qualitat de reutilització de l’aigua tractada
Resumo:
Engineering of negotiation model allows to develop effective heuristic for business intelligence. Digital ecosystems demand open negotiation models. To define in advance effective heuristics is not compliant with the requirement of openness. The new challenge is to develop business intelligence in advance exploiting an adaptive approach. The idea is to learn business strategy once new negotiation model rise in the e-market arena. In this paper we present how recommendation technology may be deployed in an open negotiation environment where the interaction protocol models are not known in advance. The solution we propose is delivered as part of the ONE Platform, open source software that implements a fully distributed open environment for business negotiation
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies
Resumo:
In today s highly competitive and global marketplace the pressure onorganizations to find new ways to create and deliver value to customersgrows ever stronger. In the last two decades, logistics and supply chainhas moved to the center stage. There has been a growing recognition thatit is through an effective management of the logistics function and thesupply chain that the goal of cost reduction and service enhancement canbe achieved. The key to success in Supply Chain Management (SCM) requireheavy emphasis on integration of activities, cooperation, coordination andinformation sharing throughout the entire supply chain, from suppliers tocustomers. To be able to respond to the challenge of integration there isthe need of sophisticated decision support systems based on powerfulmathematical models and solution techniques, together with the advancesin information and communication technologies. The industry and the academiahave become increasingly interested in SCM to be able to respond to theproblems and issues posed by the changes in the logistics and supply chain.We present a brief discussion on the important issues in SCM. We then arguethat metaheuristics can play an important role in solving complex supplychain related problems derived by the importance of designing and managingthe entire supply chain as a single entity. We will focus specially on theIterated Local Search, Tabu Search and Scatter Search as the ones, but notlimited to, with great potential to be used on solving the SCM relatedproblems. We will present briefly some successful applications.
Resumo:
One of the techniques used to detect faults in dynamic systems is analytical redundancy. An important difficulty in applying this technique to real systems is dealing with the uncertainties associated with the system itself and with the measurements. In this paper, this uncertainty is taken into account by the use of intervals for the parameters of the model and for the measurements. The method that is proposed in this paper checks the consistency between the system's behavior, obtained from the measurements, and the model's behavior; if they are inconsistent, then there is a fault. The problem of detecting faults is stated as a quantified real constraint satisfaction problem, which can be solved using the modal interval analysis (MIA). MIA is used because it provides powerful tools to extend the calculations over real functions to intervals. To improve the results of the detection of the faults, the simultaneous use of several sliding time windows is proposed. The result of implementing this method is semiqualitative tracking (SQualTrack), a fault-detection tool that is robust in the sense that it does not generate false alarms, i.e., if there are false alarms, they indicate either that the interval model does not represent the system adequately or that the interval measurements do not represent the true values of the variables adequately. SQualTrack is currently being used to detect faults in real processes. Some of these applications using real data have been developed within the European project advanced decision support system for chemical/petrochemical manufacturing processes and are also described in this paper
Resumo:
This paper presents a case study that explores the advantages that can be derived from the use of a design support system during the design of wastewater treatment plants (WWTP). With this objective in mind a simplified but plausible WWTP design case study has been generated with KBDS, a computer-based support system that maintains a historical record of the design process. The study shows how, by employing such a historical record, it is possible to: (1) rank different design proposals responding to a design problem; (2) study the influence of changing the weight of the arguments used in the selection of the most adequate proposal; (3) take advantage of keywords to assist the designer in the search of specific items within the historical records; (4) evaluate automatically thecompliance of alternative design proposals with respect to the design objectives; (5) verify the validity of previous decisions after the modification of the current constraints or specifications; (6) re-use the design records when upgrading an existing WWTP or when designing similar facilities; (7) generate documentation of the decision making process; and (8) associate a variety of documents as annotations to any component in the design history. The paper also shows one possible future role of design support systems as they outgrow their current reactive role as repositories of historical information and start to proactively support the generation of new knowledge during the design process
Resumo:
Los servicios de salud son sistemas muy complejos, pero de alta importancia, especialmente en algunos momentos críticos, en todo el mundo. Los departamentos de urgencias pueden ser una de las áreas más dinámicas y cambiables de todos los servicios de salud y a la vez más vulnerables a dichos cambios. La mejora de esos departamentos se puede considerar uno de los grandes retos que tiene cualquier administrador de un hospital, y la simulación provee una manera de examinar este sistema tan complejo sin poner en peligro los pacientes que son atendidos. El objetivo de este trabajo ha sido el modelado de un departamento de urgencias y el desarrollo de un simulador que implementa este modelo con la finalidad de explorar el comportamiento y las características de dicho servicio de urgencias. El uso del simulador ofrece la posibilidad de visualizar el comportamiento del modelo con diferentes parámetros y servirá como núcleo de un sistema de ayuda a la toma de decisiones que pueda ser usado en departamentos de urgencias. El modelo se ha desarrollado con técnicas de modelado basado en agentes (ABM) que permiten crear modelos funcionalmente más próximos a la realidad que los modelos de colas o de dinámicas de sistemas, al permitir la inclusión de la singularidad que implica el modelado a nivel de las personas. Los agentes del modelo presentado, descritos internamente como máquinas de estados, representan a todo el personal del departamento de urgencias y los pacientes que usan este servicio. Un análisis del modelo a través de su implementación en el simulador muestra que el sistema se comporta de manera semejante a un departamento de urgencias real.
Resumo:
This paper presents a procedure that allows us to determine the preference structures(PS) associated to each of the different groups of actors that can be identified in a groupdecision making problem with a large number of individuals. To that end, it makesuse of the Analytic Hierarchy Process (AHP) (Saaty, 1980) as the technique to solvediscrete multicriteria decision making problems. This technique permits the resolutionof multicriteria, multienvironment and multiactor problems in which subjective aspectsand uncertainty have been incorporated into the model, constructing ratio scales correspondingto the priorities relative to the elements being compared, normalised in adistributive manner (wi = 1). On the basis of the individuals’ priorities we identifydifferent clusters for the decision makers and, for each of these, the associated preferencestructure using, to that end, tools analogous to those of Multidimensional Scaling.The resulting PS will be employed to extract knowledge for the subsequent negotiationprocesses and, should it be necessary, to determine the relative importance of thealternatives being compared using anyone of the existing procedures
Resumo:
Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications
Resumo:
In this work we discuss some ideas and opinions related with teaching Metaheuristics in Business Schools. The main purpose of the work is to initiate a discussion and collaboration about this topic,with the final objective to improve the teaching and publicity of the area. The main topics to be discussed are the environment and focus of this teaching. We also present a SWOT analysis which lead us to the conclusion that the area of Metaheuristics only can win with the presentation and discussion of metaheuristics and related topics in Business Schools, since it consists in a excellent Decision Support tools for future potential users.