9 resultados para Multi-year class.
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
El objetivo de la presente investigación fue analizar la correspondencia entre los resultados de una evaluación de tierras con la distribución real de los cultivos. Para ello la aptitud biofísica de las tierras se comparó con diferentes tipologías de frecuencia de ocurrencia de los cultivos y rotaciones derivadas de mapas de cultivos multitemporales. La investigación fue llevada a cabo en el distrito de riego de Flumen (33.000 ha), localizado en el valle del Ebro (NE España). La evaluación de tierras se basó en una cartografía de suelos 1:100.000, según el esquema FAO, para los principales cultivos presentes en el área de estudio (alfalfa, cereales de invierno, maíz, arroz y girasol). Se utilizaron tres mapas de frecuencia de cultivos y un mapa de rotaciones, derivado de una serie temporal de imágenes Landsat TM y ETM+ del periodo 1993-2000, y se compararon con los mapas de aptitud de tierras para los diferentes cultivos. Se analizó estadísticamente (Pearson χ2, Cramer V, Gamma y Somers D) la relación entre los dos tipos de variables. Los resultados muestran la existencia de una relación significativa (P=0,001) entre la localización de los cultivos y la idoneidad de las tierras, excepto de cultivos oportunistas como el girasol, muy influenciado por las subvenciones en el periodo estudiado. Las rotaciones basadas en la alfalfa muestran los mayores porcentajes (52%) de ocupación en las tierras más aptas para la agricultura en el área de estudio. El presente enfoque multitemporal de análisis de la información ofrece una visión más real que la comparación entre un mapa de evaluación de tierras y un mapa de cultivos de una fecha determinada, cuando se valora el grado de acuerdo entre las recomendaciones sobre la aptitud de las tierras y los cultivos realmente cultivados por los agricultores.
Resumo:
In this study we propose an application of the MuSIASEM approach which is used to provide an integrated analysis of Laos across different scales. With the term “integrated analysis across scales” we mean the generation of a series of packages of quantitative indicators, characterizing the performance of the socioeconomic activities performed in Laos when considering: (i) different hierarchical levels of organization (farming systems described at the level of household, rural villages, regions of Laos, the whole country level); and (ii) different dimensions of analysis (economic dimension, social dimension, ecological dimension, technical dimension). What is relevant in this application is that the information carried out by these different packages of indicators is integrated in a system of accounting which establishes interlinkages across these indicators. This is a essential feature to study sustainability trade-offs and to build more robust scenarios of possible changes. The multi-scale integrated representation presented in this study is based on secondary data (gathered in a three year EU project – SEAtrans and integrated by other available statistical sources) and it is integrated in GIS, when dealing with the spatial representation of Laos. However, even if we use data referring to Laos, the goal of this study is not that of providing useful information about a practical policy issue of Laos, but rather, to illustrate the possibility of using a multipurpose grammar to produce an integrated set of sustainability indicators at three different levels: (i) local; (ii) meso; (iii) macro level. The technical issue addressed is the simultaneous adoption of two multi-level matrices – one referring to a characterization of human activity over a set of different categories, and another referring to a characterization of land uses over the same set of categories. In this way, it becomes possible to explain the characteristics of Laos (an integrated set of indicators defining the performance of the whole country) in relation to the characteristics of the rural Laos and urban Laos. The characteristics of rural Laos, can be explained using the characteristics of three regions defined within Laos (Northern Laos, Central Laos and Southern Laos), which in turn can be defined (using an analogous package of indicators), starting from the characteristics of three main typologies of farming systems found in the regions.
Resumo:
Solving multi-stage oligopoly models by backward induction can easily become a com- plex task when rms are multi-product and demands are derived from a nested logit frame- work. This paper shows that under the assumption that within-segment rm shares are equal across segments, the analytical expression for equilibrium pro ts can be substantially simpli ed. The size of the error arising when this condition does not hold perfectly is also computed. Through numerical examples, it is shown that the error is rather small in general. Therefore, using this assumption allows to gain analytical tractability in a class of models that has been used to approach relevant policy questions, such as for example rm entry in an industry or the relation between competition and location. The simplifying approach proposed in this paper is aimed at helping improving these type of models for reaching more accurate recommendations.
Resumo:
This paper focuses on QoS routing with protection in an MPLS network over an optical layer. In this multi-layer scenario each layer deploys its own fault management methods. A partially protected optical layer is proposed and the rest of the network is protected at the MPLS layer. New protection schemes that avoid protection duplications are proposed. Moreover, this paper also introduces a new traffic classification based on the level of reliability. The failure impact is evaluated in terms of recovery time depending on the traffic class. The proposed schemes also include a novel variation of minimum interference routing and shared segment backup computation. A complete set of experiments proves that the proposed schemes are more efficient as compared to the previous ones, in terms of resources used to protect the network, failure impact and the request rejection ratio
Resumo:
The project aims at advancing the state of the art in the use of context information for classification of image and video data. The use of context in the classification of images has been showed of great importance to improve the performance of actual object recognition systems. In our project we proposed the concept of Multi-scale Feature Labels as a general and compact method to exploit the local and global context. The feature extraction from the discriminative probability or classification confidence label field is of great novelty. Moreover the use of a multi-scale representation of the feature labels lead to a compact and efficient description of the context. The goal of the project has been also to provide a general-purpose method and prove its suitability in different image/video analysis problem. The two-year project generated 5 journal publications (plus 2 under submission), 10 conference publications (plus 2 under submission) and one patent (plus 1 pending). Of these publications, a relevant number make use of the main result of this project to improve the results in detection and/or segmentation of objects.
Resumo:
We report about a 37 year old male patient with a pectus excavatum. The patient was in NYHA functional class III. After performed computed tomography the symptoms were thought to be related to the severity of chest deformation. A Ravitch-procedure had been accomplished in a district hospital in 2009. The crack of a metal bar led to a reevaluation 2010, in which surprisingly the presence of an annuloaortic ectasia (root 73 × 74 mm) in direct neighborhood of the formerly implanted metal-bars was diagnosed. Echocardiography revealed a severe aortic valve regurgitation, the left ventricle was massively dilated presenting a reduced ejection fraction of 45%. A marfan syndrome was suspected and the patient underwent a valve sparing aortic root replacement (David procedure) in our institution with an uneventful postoperative course. A review of the literature in combination with discussion of our case suggests the application of stronger recommendations towards preoperative cardiovascular assessment in patients with pectus excavatum.
Resumo:
[cat] En aquest treball introduïm la classe de "multi-sided Böhm-Bawerk assignment games", que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.
Resumo:
[cat] En aquest treball introduïm la classe de "multi-sided Böhm-Bawerk assignment games", que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.
Resumo:
The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.