60 resultados para Multi-dimensional cluster analysis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The purpose of this paper is to study the possible differences among countries as CO2 emitters and to examine the underlying causes of these differences. The starting point of the analysis is the Kaya identity, which allows us to break down per capita emissions in four components: an index of carbon intensity, transformation efficiency, energy intensity and social wealth. Through a cluster analysis we have identified five groups of countries with different behavior according to these four factors. One significant finding is that these groups are stable for the period analyzed. This suggests that a study based on these components can characterize quite accurately the polluting behavior of individual countries, that is to say, the classification found in the analysis could be used in other studies which look to study the behavior of countries in terms of CO2 emissions in homogeneous groups. In this sense, it supposes an advance over the traditional regional or rich-poor countries classifications .
Resumo:
This paper presents an outline of rationale and theory of the MuSIASEM scheme (Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism). First, three points of the rationale behind our MuSIASEM scheme are discussed: (i) endosomatic and exosomatic metabolism in relation to Georgescu-Roegen’s flow-fund scheme; (2) the bioeconomic analogy of hypercycle and dissipative parts in ecosystems; (3) the dramatic reallocation of human time and land use patterns in various sectors of modern economy. Next, a flow-fund representation of the MUSIASEM scheme on three levels (the whole national level, the paid work sectors level, and the agricultural sector level) is illustrated to look at the structure of the human economy in relation to two primary factors: (i) human time - a fund; and (ii) exosomatic energy - a flow. The three levels representation uses extensive and intensive variables simultaneously. Key conceptual tools of the MuSIASEM scheme - mosaic effects and impredicative loop analysis - are explained using the three level flow-fund representation. Finally, we claim that the MuSIASEM scheme can be seen as a multi-purpose grammar useful to deal with sustainability issues.
Resumo:
In this study we propose an application of the MuSIASEM approach which is used to provide an integrated analysis of Laos across different scales. With the term “integrated analysis across scales” we mean the generation of a series of packages of quantitative indicators, characterizing the performance of the socioeconomic activities performed in Laos when considering: (i) different hierarchical levels of organization (farming systems described at the level of household, rural villages, regions of Laos, the whole country level); and (ii) different dimensions of analysis (economic dimension, social dimension, ecological dimension, technical dimension). What is relevant in this application is that the information carried out by these different packages of indicators is integrated in a system of accounting which establishes interlinkages across these indicators. This is a essential feature to study sustainability trade-offs and to build more robust scenarios of possible changes. The multi-scale integrated representation presented in this study is based on secondary data (gathered in a three year EU project – SEAtrans and integrated by other available statistical sources) and it is integrated in GIS, when dealing with the spatial representation of Laos. However, even if we use data referring to Laos, the goal of this study is not that of providing useful information about a practical policy issue of Laos, but rather, to illustrate the possibility of using a multipurpose grammar to produce an integrated set of sustainability indicators at three different levels: (i) local; (ii) meso; (iii) macro level. The technical issue addressed is the simultaneous adoption of two multi-level matrices – one referring to a characterization of human activity over a set of different categories, and another referring to a characterization of land uses over the same set of categories. In this way, it becomes possible to explain the characteristics of Laos (an integrated set of indicators defining the performance of the whole country) in relation to the characteristics of the rural Laos and urban Laos. The characteristics of rural Laos, can be explained using the characteristics of three regions defined within Laos (Northern Laos, Central Laos and Southern Laos), which in turn can be defined (using an analogous package of indicators), starting from the characteristics of three main typologies of farming systems found in the regions.
Resumo:
This study presents a first attempt to extend the “Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM)” approach to a spatial dimension using GIS techniques in the Metropolitan area of Barcelona. We use a combination of census and commercial databases along with a detailed land cover map to create a layer of Common Geographic Units that we populate with the local values of human time spent in different activities according to MuSIASEM hierarchical typology. In this way, we mapped the hours of available human time, in regards to the working hours spent in different locations, putting in evidence the gradients in spatial density between the residential location of workers (generating the work supply) and the places where the working hours are actually taking place. We found a strong three-modal pattern of clumps of areas with different combinations of values of time spent on household activities and on paid work. We also measured and mapped spatial segregation between these two activities and put forward the conjecture that this segregation increases with higher energy throughput, as the size of the functional units must be able to cope with the flow of exosomatic energy. Finally, we discuss the effectiveness of the approach by comparing our geographic representation of exosomatic throughput to the one issued from conventional methods.
Resumo:
We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.
Resumo:
Morphological descriptors are practical and essential biomarkers for diagnosis andtreatment selection for intracranial aneurysm management according to the current guidelinesin use. Nevertheless, relatively little work has been dedicated to improve the three-dimensionalquanti cation of aneurysmal morphology, automate the analysis, and hence reduce the inherentintra- and inter-observer variability of manual analysis. In this paper we propose a methodologyfor the automated isolation and morphological quanti cation of saccular intracranial aneurysmsbased on a 3D representation of the vascular anatomy.
Resumo:
The Spanish savings banks attracted quite a considerable amount of interest within the scientific arena, especially subsequent to the disappearance of the regulatory constraints during the second decade of the 1980s. Nonetheless, a lack of research identified with respect to mainstream paths given by strategic groups, and the analysis of the total factor productivity. Therefore, on the basis of the resource-based view of the firm and cluster analysis, we make use of changes in structure and performance ratios in order to identify the strategic groups extant in the sector. We attain a threeways division, which we link with different input-output specifications defining strategic paths. Consequently, on the basis of these three dissimilar approaches we compute and decompose a Hicks-Moorsteen total factor productivity index. Obtained results put forward an interesting interpretation under a multi-strategic approach, together with the setbacks of employing cluster analysis within a complex strategic environment. Moreover, we also propose an ex-post method of analysing the outcomes of the decomposed total factor productivity index that could be merged with non-traditional techniques of forming strategic groups, such as cognitive approaches.
Resumo:
The objective of research was to analyse the potential of Normalized Difference Vegetation Index (NDVI) maps from satellite images, yield maps and grapevine fertility and load variables to delineate zones with different wine grape properties for selective harvesting. Two vineyard blocks located in NE Spain (Cabernet Sauvignon and Syrah) were analysed. The NDVI was computed from a Quickbird-2 multi-spectral image at veraison (July 2005). Yield data was acquired by means of a yield monitor during September 2005. Other variables, such as the number of buds, number of shoots, number of wine grape clusters and weight of 100 berries were sampled in a 10 rows × 5 vines pattern and used as input variables, in combination with the NDVI, to define the clusters as alternative to yield maps. Two days prior to the harvesting, grape samples were taken. The analysed variables were probable alcoholic degree, pH of the juice, total acidity, total phenolics, colour, anthocyanins and tannins. The input variables, alone or in combination, were clustered (2 and 3 Clusters) by using the ISODATA algorithm, and an analysis of variance and a multiple rang test were performed. The results show that the zones derived from the NDVI maps are more effective to differentiate grape maturity and quality variables than the zones derived from the yield maps. The inclusion of other grapevine fertility and load variables did not improve the results.
Resumo:
The main aim of this study was to replicate and extend previous results on subtypes of adolescents with substance use disorders (SUD), according to their Minnesota Multiphasic Personality Inventory for adolescents (MMPI-A) profiles. Sixty patients with SUD and psychiatric comorbidity (41.7% male, mean age = 15.9 years old) completed the MMPI-A, the Teen Addiction Severity Index (T-ASI), the Child Behaviour Checklist (CBCL), and were interviewed in order to determine DSMIV diagnoses and level of substance use. Mean MMPI-A personality profile showed moderate peaks in Psychopathic Deviate, Depression and Hysteria scales. Hierarchical cluster analysis revealed four profiles (acting-out, 35% of the sample; disorganized-conflictive, 15%; normative-impulsive, 15%; and deceptive-concealed, 35%). External correlates were found between cluster 1, CBCL externalizing symptoms at a clinical level and conduct disorders, and between cluster 2 and mixed CBCL internalized/externalized symptoms at a clinical level. Discriminant analysis showed that Depression, Psychopathic Deviate and Psychasthenia MMPI-A scales correctly classified 90% of the patients into the clusters obtained.
Resumo:
This paper presents a composite index of early childhood health using a multivariate statistical approach. The index shows how child health varies across Colombian departments, -administrative subdivisions-. In recent years there has been growing interest in composite indicators as an efficient analysis tool and a way of prioritizing policies. These indicators not only enable multi-dimensional phenomena to be simplified but also make it easier to measure, visualize, monitor and compare a country’s performance in particular issues. We used data collected from the Colombian Demographic and Health Survey, DHS, for 32 departments and the capital city, Bogotá, in 2005 and 2010. The variables included in the index provide a measure of three dimensions related to child health: health status, health determinants and the health system. In order to generate the weight of the variables and take into account the discrete nature of the data, we employed a principal component analysis, PCA, using polychoric correlation. From this method, five principal components were selected. The index was estimated using a weighted average of the components retained. A hierarchical cluster analysis was also carried out. We observed that the departments ranking in the lowest positions are located on the Colombian periphery. They are departments with low per capita incomes and they present critical social indicators. The results suggest that the regional disparities in child health may be associated with differences in parental characteristics, household conditions and economic development levels, which makes clear the importance of context in the study of child health in Colombia.
Resumo:
The main aim of this study was to replicate and extend previous results on subtypes of adolescents with substance use disorders (SUD), according to their Minnesota Multiphasic Personality Inventory for adolescents (MMPI-A) profiles. Sixty patients with SUD and psychiatric comorbidity (41.7% male, mean age = 15.9 years old) completed the MMPI-A, the Teen Addiction Severity Index (T-ASI), the Child Behaviour Checklist (CBCL), and were interviewed in order to determine DSMIV diagnoses and level of substance use. Mean MMPI-A personality profile showed moderate peaks in Psychopathic Deviate, Depression and Hysteria scales. Hierarchical cluster analysis revealed four profiles (acting-out, 35% of the sample; disorganized-conflictive, 15%; normative-impulsive, 15%; and deceptive-concealed, 35%). External correlates were found between cluster 1, CBCL externalizing symptoms at a clinical level and conduct disorders, and between cluster 2 and mixed CBCL internalized/externalized symptoms at a clinical level. Discriminant analysis showed that Depression, Psychopathic Deviate and Psychasthenia MMPI-A scales correctly classified 90% of the patients into the clusters obtained.
Resumo:
Recent trends in technology transfer show an intensification of spin-off creation as a modality of university research commercialisation, complementary to the conventional ones, contract research and licensing. In this paper we analyse the evolution, objectives, resources and activities of a specialised unit –Technological Trampoline (TT) - in charge of new venture creation at the University of Girona (Catalonia-Spain). Based on two theoretical frameworks, Resource-based-view and Institutional Theory, we adopt a multi-dimensional approach to study the strategy of spinning-off new ventures at the University of Girona in terms of resources and activities, how this process is organised and if the outputs fit with this UdG’s objectives and the local environment. Our main contribution is an in-depth analysis of the spin-off creation unit with special emphasis on its variety of resources and activities. The results have a series of implications and recommendations at both university and TT level.
Resumo:
Compositional data naturally arises from the scientific analysis of the chemicalcomposition of archaeological material such as ceramic and glass artefacts. Data of thistype can be explored using a variety of techniques, from standard multivariate methodssuch as principal components analysis and cluster analysis, to methods based upon theuse of log-ratios. The general aim is to identify groups of chemically similar artefactsthat could potentially be used to answer questions of provenance.This paper will demonstrate work in progress on the development of a documentedlibrary of methods, implemented using the statistical package R, for the analysis ofcompositional data. R is an open source package that makes available very powerfulstatistical facilities at no cost. We aim to show how, with the aid of statistical softwaresuch as R, traditional exploratory multivariate analysis can easily be used alongside, orin combination with, specialist techniques of compositional data analysis.The library has been developed from a core of basic R functionality, together withpurpose-written routines arising from our own research (for example that reported atCoDaWork'03). In addition, we have included other appropriate publicly availabletechniques and libraries that have been implemented in R by other authors. Availablefunctions range from standard multivariate techniques through to various approaches tolog-ratio analysis and zero replacement. We also discuss and demonstrate a smallselection of relatively new techniques that have hitherto been little-used inarchaeometric applications involving compositional data. The application of the libraryto the analysis of data arising in archaeometry will be demonstrated; results fromdifferent analyses will be compared; and the utility of the various methods discussed
Resumo:
A cultivation-independent approach based on polymerase chain reaction (PCR)-amplified partial small subunit rRNA genes was used to characterize bacterial populations in the surface soil of a commercial pear orchard consisting of different pear cultivars during two consecutive growing seasons. Pyrus communis L. cvs Blanquilla, Conference, and Williams are among the most widely cultivated cultivars in Europe and account for the majority of pear production in Northeastern Spain. To assess the heterogeneity of the community structure in response to environmental variables and tree phenology, bacterial populations were examined using PCR-denaturing gradient gel electrophoresis (DGGE) followed by cluster analysis of the 16S ribosomal DNA profiles by means of the unweighted pair group method with arithmetic means. Similarity analysis of the band patterns failed to identify characteristic fingerprints associated with the pear cultivars. Both environmentally and biologically based principal-component analyses showed that the microbial communities changed significantly throughout the year depending on temperature and, to a lesser extent, on tree phenology and rainfall. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant bacterial populations. Most DGGE band sequences were related to bacterial phyla, such as Bacteroidetes, Cyanobacteria, Acidobacteria, Proteobacteria, Nitrospirae, and Gemmatimonadetes, previously associated with typical agronomic crop environments
Resumo:
The soy expansion model in Argentina generates structural changes in traditional lifestyles that can be associated with different biophysical and socioeconomic impacts. To explore this issue, we apply an innovative method for integrated assessment - the Multi Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) framework - to characterize two communities in the Chaco Region, Province of Formosa, North of Argentina. These communities have recently experienced the expansion of soy production, altering their economic activity, energy consumption patterns, land use, and human time allocation. The integrated characterization presented in the paper illustrates the differences (biophysical, socioeconomic, and historical) between the two communities that can be associated with different responses. The analysis of the factors behind these differences has important policy implications for the sustainable development of local communities in the area.