34 resultados para Model based control
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no permet ajustar per efectes principals ni per variables confusores. En aquest article il•lustrem les limitacions de l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies parametriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La nova metodologia s’il•lustra amb dades de l’Estudi Espanyol de Cancer de Bufeta.
Resumo:
Report for the scientific sojourn at the University of Linköping between April to July 2007. Monitoring of the air intake system of an automotive engine is important to meet emission related legislative diagnosis requirements. During the research the problem of fault detection in the air intake system was stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem was solved using Interval-based Consistency Techniques. Interval-based consistency techniques are shown to be particularly efficient for checking the consistency of the Analytical Redundancy Relations (ARRs), dealing with uncertain measurements and parameters, and using experimental data. All experiments were performed on a four-cylinder turbo-charged spark-ignited SAAB engine located in the research laboratory at Vehicular System Group - University of Linköping.
Resumo:
A decentralized model reference controller is designed to reduce the magnitude of the transversal vibration of a flexible cable-stayed beam structure induced by a seismic excitation. The controller design is made based on the principle of sliding mode such that a priori knowledge
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
Report for the scientific sojourn carried out at the Model-based Systems and Qualitative Reasoning Group (Technical University of Munich), from September until December 2005. Constructed wetlands (CWs), or modified natural wetlands, are used all over the world as wastewater treatment systems for small communities because they can provide high treatment efficiency with low energy consumption and low construction, operation and maintenance costs. Their treatment process is very complex because it includes physical, chemical and biological mechanisms like microorganism oxidation, microorganism reduction, filtration, sedimentation and chemical precipitation. Besides, these processes can be influenced by different factors. In order to guarantee the performance of CWs, an operation and maintenance program must be defined for each Wastewater Treatment Plant (WWTP). The main objective of this project is to provide a computer support to the definition of the most appropriate operation and maintenance protocols to guarantee the correct performance of CWs. To reach them, the definition of models which represent the knowledge about CW has been proposed: components involved in the sanitation process, relation among these units and processes to remove pollutants. Horizontal Subsurface Flow CWs are chosen as a case study and the filtration process is selected as first modelling-process application. However, the goal is to represent the process knowledge in such a way that it can be reused for other types of WWTP.
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
Multiple Sclerosis is the most common non-traumatic cause of neurologicaldisability in young people. There is no cure yet, and until recently, few long-termtherapies existed. Interferon beta (IFNβ) was the first treatment, and remains the mostcommonly prescribed. One of the most significant problems of IFNβ therapy is theproduction of drug specific antibodies. Up to 45% of patients develop neutralizingantibodies (NAbs) to IFNβ products. The neutralizing antibody binds to the biologicalagent preventing its interaction with its receptor, inhibiting the biological action of theprotein, which abrogates the clinical efficacy of IFNβ treatment. Interferon-betamediates its response by binding to its high affinity cell surface receptor and initiatingthe JAK/STAT signalling cascade. In this project we have analyzed the IFNβ signalingpathway in macrophages when neutralizing antibodies are present. The response tothis pathway after IFNβ stimulation shows a transient oscillatory rhythm of STAT1phosphorylation, which varies as NAbs concentration increases. To improve ourunderstanding of that behavior, we extended an existing mathematical model based onnonlinear ordinary differential equations of JAK/STAT pathway by including IFN-NAbassociation and IFN-activation receptor. Combining our theoretical model withexperimental data we could study the role of neutralizing antibodies on the molecularresponse and determine its lifetime after cytokine stimulation.
Resumo:
The penetration of PKI technology in the market is moving slowly due to interoperability concerns. Main causes are not technical but political and social since there is no trust development model that appropriately deals with multidomain PKIs. We propose a new architecture that on one hand considers that trust is not an homogeneous property but tied to a particular relation, and on the other hand, trust management must be performed through specialized entities that can evaluate its risks and threads. The model is based on trust certificate lists that allows users to hold a personalized trust view without having to get involved in technical details. The model dynamically adapts tothe context changes thanks to a new certificate extension, we have called TrustProviderLink (TPL).
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
Los sistemas de radio cognitivos son una solución a la deficiente distribución del espectro inalámbrico de frecuencias. Usando acceso dinámico al medio, los usuarios secundarios pueden comunicarse en canales de frecuencia disponibles, mientras los usuarios asignados no están usando dichos canales. Un buen sistema de mensajería de control es necesario para que los usuarios secundarios no interfieran con los usuarios primarios en las redes de radio cognitivas. Para redes en donde los usuarios son heterogéneos en frecuencia, es decir, no poseen los mismos canales de frecuencia para comunicarse, el grupo de canales utilizado para transmitir información de control debe elegirse cuidadosamente. Por esta razón, en esta tesis se estudian las ideas básicas de los esquemas de mensajería de control usados en las redes de radio cognitivas y se presenta un esquema adecuado para un control adecuado para usuarios heterogéneos en canales de frecuencia. Para ello, primero se presenta una nueva taxonomía para clasificar las estrategias de mensajería de control, identificando las principales características que debe cumplir un esquema de control para sistemas heterogéneos en frecuencia. Luego, se revisan diversas técnicas matemáticas para escoger el mínimo número de canales por los cuales se transmite la información de control. Después, se introduce un modelo de un esquema de mensajería de control que use el mínimo número de canales y que utilice las características de los sistemas heterogéneos en frecuencia. Por último, se comparan diversos esquemas de mensajería de control en términos de la eficiencia de transmisión.
Resumo:
Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.