6 resultados para Mode 2
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
En aquest projecte s’ha implementat un sistema de control per a les bombes microfluídiques LPVX de The Lee Company funcionant a mode de xeringa. El sistema consisteix en un circuit controlador basat en el microxip UDN 296 B de Allegro MicroSystems, que conté dos Ponts en H per a controlar motors pas a pas i dos mòduls de Modulació d’Amplada de Polsos (PWM), governat a partir d’un programa de control com a instrument virtual dissenyat sota l’entorn LabVIEW. El programa de control permet indicar la quantitat de volum a aspirar o dispensar per la bomba i escollir entre una execució simple o una de continuada, podent-ne controlar en aquest segona opció el temps entre execució i execució. El programa també permet visualitzar el procés mitjançant la obtenció de la imatge d’una webcam amb DirectShow. Finalment també permet el control remot de l’Instrument Virtual a través de la xarxa d’Internet.
Resumo:
En aquest treball final de carrera estudiarem i implementarem un algoritme per determinar el subgrup de 2-Sylow d'una corba el·líptica sobre un cos de característica 2. També es donen exemples de com es distribueixen totes les possibles corbes segons el subgrup de 2-Sylow. Finalment, implementarem un mode de l'algoritme capaç de trobar amb corbes sobre cossos binaris graus amb subgrups de 2-Sylow grans.
Resumo:
La tècnica de l’electroencefalograma (EEG) és una de les tècniques més utilitzades per estudiar el cervell. En aquesta tècnica s’enregistren els senyals elèctrics que es produeixen en el còrtex humà a través d’elèctrodes col•locats al cap. Aquesta tècnica, però, presenta algunes limitacions a l’hora de realitzar els enregistraments, la principal limitació es coneix com a artefactes, que són senyals indesitjats que es mesclen amb els senyals EEG. L’objectiu d’aquest treball de final de màster és presentar tres nous mètodes de neteja d’artefactes que poden ser aplicats en EEG. Aquests estan basats en l’aplicació de la Multivariate Empirical Mode Decomposition, que és una nova tècnica utilitzada per al processament de senyal. Els mètodes de neteja proposats s’apliquen a dades EEG simulades que contenen artefactes (pestanyeigs), i un cop s’han aplicat els procediments de neteja es comparen amb dades EEG que no tenen pestanyeigs, per comprovar quina millora presenten. Posteriorment, dos dels tres mètodes de neteja proposats s’apliquen sobre dades EEG reals. Les conclusions que s’han extret del treball són que dos dels nous procediments de neteja proposats es poden utilitzar per realitzar el preprocessament de dades reals per eliminar pestanyeigs.
Resumo:
In this work we explore the multivariate empirical mode decomposition combined with a Neural Network classifier as technique for face recognition tasks. Images are simultaneously decomposed by means of EMD and then the distance between the modes of the image and the modes of the representative image of each class is calculated using three different distance measures. Then, a neural network is trained using 10- fold cross validation in order to derive a classifier. Preliminary results (over 98 % of classification rate) are satisfactory and will justify a deep investigation on how to apply mEMD for face recognition.
Resumo:
The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic β-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor β (TRβ), in a high-throughput screen. Initial evidence suggested that the aromatic β-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRβ surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRβ with the inhibitor HPPE at 2.3-Å resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRβ and its coactivator. Several lines of evidence, including experiments with TRβ mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRβ, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) β-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRβ. DHPPA represents a novel class of potent TRβ antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.
Resumo:
The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic β-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor β (TRβ), in a high-throughput screen. Initial evidence suggested that the aromatic β-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRβ surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRβ with the inhibitor HPPE at 2.3-Å resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRβ and its coactivator. Several lines of evidence, including experiments with TRβ mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRβ, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) β-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRβ. DHPPA represents a novel class of potent TRβ antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.