43 resultados para Minimal cut sets
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The method of extracting effective atomic orbitals and effective minimal basis sets from molecular wave function characterizing the state of an atom in a molecule is developed in the framework of the "fuzzy" atoms. In all cases studied, there were as many effective orbitals that have considerable occupation numbers as orbitals in the classical minimal basis. That is considered to be of high conceptual importance
Resumo:
The Lempert function for a set of poles in a domain of Cn at a point z is obtained by taking a certain infimum over all analytic disks going through the poles and the point z, and majorizes the corresponding multi-pole pluricomplex Green function. Coman proved that both coincide in the case of sets of two poles in the unit ball. We give an example of a set of three poles in the unit ball where this equality fails.
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
For bilipschitz images of Cantor sets in Rd we estimate the Lipschitz harmonic capacity and show this capacity is invariant under bilipschitz homeomorphisms.
Resumo:
We describe a method for determining the minimal length of elements in the generalized Thompson's groups F(p). We compute the length of an element by constructing a tree pair diagram for the element, classifying the nodes of the tree and summing associated weights from the pairs of node classifications. We use this method to effectively find minimal length representatives of an element.
Resumo:
We establish a one-to-one correspondence between the renormalizations and proper totally invariant closed sets (i.e., α-limit sets) of expanding Lorenz map, which enable us to distinguish periodic and non-periodic renormalizations. We describe the minimal renormalization by constructing the minimal totally invariant closed set, so that we can define the renormalization operator. Using consecutive renormalizations, we obtain complete topological characteriza- tion of α-limit sets and nonwandering set decomposition. For piecewise linear Lorenz map with slopes ≥ 1, we show that each renormalization is periodic and every proper α-limit set is countable.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.
Resumo:
La proposta de tesi pren com a punt de partida les respostes artístiques i teòriques dutes a terme a partir dels anys seixanta contra un context de coneixement tradicional fonamentalment racionalista, que segueix la tradició lògica de la modernitat i que troba el seu reflex i aplicació social en l’ordre espaial i per extensió, en la geometria. Un cop descrites les nocions que d’aquesta modernitat han estat aplicades a l’art dels anys 50 i 60, es mostra com les crítiques de determinats filòsofs i artistes han anat conformant un corpus teòric i artístic que ha implicat un intent d’enderrocament d’aquest sistema tradicional de coneixement, interpretació, lectura i atorgament de sentit a les obres artístiques. Aquests són: M.Foucault, J.Derrida, R. Smithson, R. Serra, R. Morris, Mona Hatoum, Imi Knoebel o Tacita Dean, entre d’altres. Seguidament es presenta un anàlisi més profund i detallat d’aquelles respostes artístiques més paradigmàtiques, tant al sistema de pensament tradicional com a l’ordre espaial que aquest conseqüentment implica. Aquestes crítiques s’organitzen en dues parts antagòniques: l’una és “L’adveniment del caos”, i l’altra és la “Crítica de l’ordre”. Els artistes són: L. Bourgeois, E.Hesse, A.Mendieta i P.Halley. En una tercera part, es descriu com aquest inici deconstructor del paradigma de coneixement tradicional iniciat als anys seixanta es desenvolupa durant els següents vint anys tenint en aquest cas com a fonament teòric les crítiques de R.Krauss, J. Baudrillard, P.Virilio, i com artistes els arquitectes P. Eienmann i F. Gehri, entre d’altres. La conclusió fonamental d’aquests apartats intenta posar de manifest la subversió o infracció de la geometria com a contenidora dels conceptes de la modernitat: raó i ordre moral. Finalment, en una quarta part s’inclou el propi projecte artístic que representa l’experimentació i praxi de les conclusions teòriques d’aquesta tesi.
Resumo:
We study the existence of solutions to general measure-minimization problems over topological classes that are stable under localized Lipschitz homotopy, including the standard Plateau problem without the need for restrictive assumptions such as orientability or even rectifiability of surfaces. In case of problems over an open and bounded domain we establish the existence of a “minimal candidate”, obtained as the limit for the local Hausdorff convergence of a minimizing sequence for which the measure is lower-semicontinuous. Although we do not give a way to control the topological constraint when taking limit yet— except for some examples of topological classes preserving local separation or for periodic two-dimensional sets — we prove that this candidate is an Almgren-minimal set. Thus, using regularity results such as Jean Taylor’s theorem, this could be a way to find solutions to the above minimization problems under a generic setup in arbitrary dimension and codimension.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We present sharpened lower bounds on the size of cut free proofs for first-order logic. Prior lower bounds for eliminating cuts from a proof established superexponential lower bounds as a stack of exponentials, with the height of the stack proportional to the maximum depth d of the formulas in the original proof. Our new lower bounds remove the constant of proportionality, giving an exponential stack of height equal to d − O(1). The proof method is based on more efficiently expressing the Gentzen-Solovay cut formulas as low depth formulas.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.