10 resultados para Microbiology contamination
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
High hydrostatic pressure is being increasingly investigated in food processing. It causes microbial inactivation and therefore extends the shelf life and enhances the safety of food products. Yeasts, molds, and vegetative cells of bacteria can be inactivated by pressures in the range of 200 to 700 MPa. Microorganisms are more or less sensitive to pressure depending on several factors such as type, strain and the phase or state of the cells. In general, Gram-positive organisms are usually more resistant than Gram-negative. High pressure processing modifies the permeability of the cell membrane, the ion exchange and causes changes in morphology and biochemical reactions, protein denaturations and inhibition of genetic mechanisms. High pressure has been used successfully to extend the shelf life of high-acid foods such as refrigerated fruit juices, jellies and jams. There is now an increasing interest in the use of this technology to extend the shelf life of low-acid foods such as different types of meat products.
Resumo:
Microorganisms interact with plants because plants offer a wide diversity of habitats including the phyllosphere (aerial plant part), the rhizosphere (zone of influence of the root system), and the endosphere (internal transport system). Interactions of epiphytes, rhizophytes or endophytes may be detrimental or beneficial for either the microorganism or the plant and may be classified as neutralism, commensalism, synergism, mutualism, amensalism, competition or parasitism
Resumo:
Peer-reviewed
Resumo:
The presence of hydrogen in polysilicon films obtained at low temperatures by hot-wire CVD and the post-deposition oxidation by air-exposure of the films are studied in this paper. The experimental results from several characterization techniques (infrared spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry and wavelength dispersive spectroscopy) showed that hydrogen and oxygen are homogeneously distributed at grain boundaries throughout the depth of the films. Hydrogen is introduced during the growth process and its concentration is higher in samples deposited at lower temperatures. Oxygen diffuses along the grain boundaries and binds to silicon atoms, mainly in Si 2O groups.
Resumo:
Objectives: To evaluate the shear bond strength and site of failure of brackets bonded to dry and wet enamel. Study design: 50 teeth were divided into ten groups of 5 teeth each (10 surfaces). In half the groups enamel was kept dry before bonding, and in the other half distilled water was applied to wet the surface after etching. The following groups were established: 1)Acid/Transbond-XT (dry/wet) XT; 2) Transbond Plus Self Etching Primer (TSEP)/Transbond-XT paste (dry/wet); 3) Concise (dry), Transbond MIP/Concise (wet), 4) FujiOrtho-LC (dry/wet); 5) SmartBond (dry/wet). Brackets were bonded to both buccal and lingual surfaces. Specimens were stored in distilled water (24 hours at 37ºC) and thermocycled. Brackets were debonded using a Universal testing machine (cross-head speed 1 mm/min). Failure sites were classified using a stereomicroscope. Results: No significant differences in bond strength were detected between the adhesives under wet and dry conditions except for Smart- Bond, whose bond strength was significantly lower under dry conditions. For all the adhesives most bond failures were of mixed site location except for Smartbond, which failed at the adhesive-bracket interface. Conclusions: Under wet conditions the bonding capacity of the adhesives tested was similar than under dry conditions, with the exception of SmartBond which improved under wet conditions
Resumo:
Alteration and contamination processes modify the chemical composition of ceramic artefacts. This is not restricted solely to the affected elements, but also affects general concentrations. This is due to the compositional nature of chemical data, enclosed by the restriction of unit sum. Since it is impossible to know prior to data treatment whether the original compositions have been changed by such processes, the methodological approach used in provenance studies must be robust enough to handle materials that might have been altered or contaminated. The ability of the logratio transformation proposed by Aitchison to handle compositional data is studied and compared with that of present data treatments. The logaratio transformation appears to offer the most robust approach
Resumo:
A capillary microtrap thermal desorption module is developed for near real-time analysis of volatile organic compounds (VOCs) at sub-ppbv levels in air samples. The device allows the direct injection of the thermally desorbed VOCs into a chromatographic column. It does not use a second cryotrap to focalize the adsorbed compounds before entering the separation column so reducing the formation of artifacts. The connection of the microtrap to a GC–MS allows the quantitative determination of VOCs in less than 40 min with detection limits of between 5 and 10 pptv (25 °C and 760 mmHg), which correspond to 19–43 ng m−3, using sampling volumes of 775 cm3. The microtrap is applied to the analysis of environmental air contamination in different laboratories of our faculty. The results obtained indicate that most volatile compounds are easily diffused through the air and that they also may contaminate the surrounding areas when the habitual safety precautions (e.g., working under fume hoods) are used during the manipulation of solvents. The application of the microtrap to the analysis of VOCs in breath samples suggest that 2,5-dimethylfuran may be a strong indicator of a person's smoking status