4 resultados para Messenger-rna Levels
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background In the Strategies for Management of Anti-Retroviral Therapy trial, all-cause mortality was higher for participants randomized to intermittent, CD4-guided antiretroviral treatment (ART) (drug conservation [DC]) than continuous ART (viral suppression [VS]). We hypothesized that increased HIV-RNA levels following ART interruption induced activation of tissue factor pathways, thrombosis, and fibrinolysis. Methods and Findings Stored samples were used to measure six biomarkers: high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), amyloid A, amyloid P, D-dimer, and prothrombin fragment 1þ2. Two studies were conducted: (1) a nested case-control study for studying biomarker associations with mortality, and (2) a study to compare DC and VS participants for biomarker changes. For (1), markers were determined at study entry and before death (latest level) for 85 deaths and for two controls (n¼170) matched on country, age, sex, and date of randomization. Odds ratios (ORs) were estimated with logistic regression. For each biomarker, each of the three upper quartiles was compared to the lowest quartile. For (2), the biomarkers were assessed for 249 DC and 250 VS participants at study entry and 1 mo following randomization. Higher levels of hsCRP, IL-6, and D-dimer at study entry were significantly associated with an increased risk of all-cause mortality. Unadjusted ORs (highest versus lowest quartile) were 2.0 (95% confidence interval [CI], 1.0-4.1; p¼0.05), 8.3 (95% CI, 3.3-20.8; p , 0.0001), and 12.4 (95% CI, 4.2-37.0; p , 0.0001), respectively. Associations were significant after adjustment, when the DC and VS groups were analyzed separately, and when latest levels were assessed. IL-6 and D-dimer increased at 1 mo by 30% and 16% in the DC group and by 0% and 5% in the VS group (p , 0.0001 for treatment difference for both biomarkers); increases in the DC group were related to HIV-RNA levels at 1 mo (p , 0.0001). In an expanded case-control analysis (four controls per case), the OR (DC/VS) for mortality was reduced from 1.8 (95% CI, 1.1-3.1; p¼0.02) to 1.5 (95% CI, 0.8-2.8) and 1.4 (95% CI, 0.8-2.5) after adjustment for latest levels of IL-6 and D-dimer, respectively. Conclusions IL-6 and D-dimer were strongly related to all-cause mortality. Interrupting ART may further increase the risk of death by raising IL-6 and D-dimer levels. Therapies that reduce the inflammatory response to HIV and decrease IL-6 and D-dimer levels may warrant investigation.
Resumo:
Increased production of vasoconstrictive prostanoids, such as thromboxane A2 (TXA2 ), contributes to endothelial dysfunction and increased hepatic vascular tone in cirrhosis. TXA2 induces vasoconstriction by way of activation of the thromboxane-A2 /prostaglandin-endoperoxide (TP) receptor. This study investigated whether terutroban, a specific TP receptor blocker, decreases hepatic vascular tone and portal pressure in rats with cirrhosis due to carbon tetrachloride (CCl4 ) or bile duct ligation (BDL). Hepatic and systemic hemodynamics, endothelial dysfunction, liver fibrosis, hepatic Rho-kinase activity (a marker of hepatic stellate cell contraction), and the endothelial nitric oxide synthase (eNOS) signaling pathway were measured in CCl4 and BDL cirrhotic rats treated with terutroban (30 mg/kg/day) or its vehicle for 2 weeks. Terutroban reduced portal pressure in both models without producing significant changes in portal blood flow, suggesting a reduction in hepatic vascular resistance. Terutroban did not significantly change arterial pressure in CCl4 -cirrhotic rats but decreased it significantly in BDL-cirrhotic rats. In livers from CCl4 and BDL-cirrhotic terutroban-treated rats, endothelial dysfunction was improved and Rho-kinase activity was significantly reduced. In CCl4 -cirrhotic rats, terutroban reduced liver fibrosis and decreased alpha smooth muscle actin (α-SMA), collagen-I, and transforming growth factor beta messenger RNA (mRNA) expression without significant changes in the eNOS pathway. In contrast, no change in liver fibrosis was observed in BDL-cirrhotic rats but an increase in the eNOS pathway. CONCLUSION: Our data indicate that TP-receptor blockade with terutroban decreases portal pressure in cirrhosis. This effect is due to decreased hepatic resistance, which in CCl4 -cirrhotic rats was linked to decreased hepatic fibrosis, but not in BDL rats, in which the main mediator appeared to be an enhanced eNOS-dependent vasodilatation, which was not liver-selective, as it was associated with decreased arterial pressure. The potential use of terutroban for portal hypertension requires further investigation.
Resumo:
In order to search for novel genes involved in cell proliferation, the hypothesis was that by infecting primary cells with a cDNA library of immortal cells would render immortalizing genes. Consequently it has been discovered CIRP (Cold inducible RNA-binding protein). Mammalian cells exposed to mild hypothermia show a general inhibition of protein synthesis and a concomitant increase in the expression of a small number of cold-shock mRNAs and proteins. Rbm3, another RNA binding protein belonging to the same family, has been postulated to facilitate protein synthesis at mild cold shock. To investigate if the same occurs for CIRP, CIRP was overexpressed in primary cells and protein sintesis was measured. Interestingly, CIRP increased protein synthesis, however, such increase did not involve an increase in the polysome fraction or affected the ribosome profile. In addition, the effect caused by CIRP inhibition or knockdown was also analyzed. Different siRNAs against CIRP were tested. Once checked their efficiency by decreasing CIRP at mRNA and protein levels, proliferation was tested by BrdU, cell number (DAPI) and proliferation curves were performed. Interestingly, CIRP provoke a decreased proliferation in primary cells: MEFs, HMEC; and cancer cells: TERA2 and HeLa. In conclusion, we describe for the first time that CIRP bypasses replicative senescence when over-expressed at physiological temperature (37ºC) by increasing a general protein synthesis. This effect is achieved through ERK1/2 activation in MEFs.The decrease in growth rate found in mammalian cells treated with mild cold stress is not entirely attributable to arrested metabolism. This decrease may also involve an active process in which CIRP and other stress-responsive proteins play a fundamental role in stimulating proliferation. Although most cell proteins are down-regulated or inhibited with cold stress, CIRP is activated to maintain cells in an active proliferative status and its overexpression at 37°C might be potentially oncogenic.
Resumo:
Background MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression usually producing translational repression and gene silencing. High-throughput sequencing technologies have revealed heterogeneity at length and sequence level for the majority of mature miRNAs (IsomiRs). Most isomiRs can be explained by variability in either Dicer1 or Drosha cleavage during miRNA biogenesis at 5" or 3" of the miRNA (trimming variants). Although isomiRs have been described in different tissues and organisms, their functional validation as modulators of gene expression remains elusive. Here we have characterized the expression and function of a highly abundant miR-101 5"-trimming variant (5"-isomiR-101). Results The analysis of small RNA sequencing data in several human tissues and cell lines indicates that 5"-isomiR-101 is ubiquitously detected and a highly abundant, especially in the brain. 5"- isomiR-101 was found in Ago-2 immunocomplexes and complementary approaches showed that 5"-isomiR-101 interacted with different members of the silencing (RISC) complex. In addition, 5"-isomiR-101 decreased the expression of five validated miR-101 targets, suggesting that it is a functional variant. Both the binding to RISC members and the degree of silencing were less efficient for 5"-isomiR-101 compared with miR-101. For some targets, both miR-101 and 5"-isomiR-101 significantly decreased protein expression with no changes in the respective mRNA levels. Although a high number of overlapping predicted targets suggest similar targeted biological pathways, a correlation analysis of the expression profiles of miR-101 variants and predicted mRNA targets in human brains at different ages, suggest specific functions for miR-101- and 5"-isomiR-101. Conclusions These results suggest that isomiRs are functional variants and further indicate that for a given miRNA, the different isomiRs may contribute to the overall effect as quantitative and qualitative fine-tuners of gene expression.