7 resultados para Maximum Allowable Concentration
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The paper analyses the inter and intragenerational redistribution effects ofthe public pensions system in Spain. This is achieved by first comparing the expected present value of life-time income transfers (PVT) and internalrates of return (IRR) of different population cohorts. Secondly, we study the intragenerational aspects of the Spanish public pensions by calculating PVTs the IRRs for workers of different categories, grouped by earnings, gender and marital status.The results obtained show the nature of the important intergenerational effects of the Social Security System in Spain. The oldest 1935 cohort clearlybenefits in relation to the youngest 1965 cohort. This is basically due to thegap between current wages and the contribution bases established in the 60s and 70s in Spain during the early stages of the Social Security System, and to the worsening shortfall in Social Security funding, combined with the longer of life expectancy.In addition, intragenerational effects exist by income levels. For contributors who pay between the minimum and the maximum allowable contribution bases, net transfers and rates of return are higher in actuarial terms for high incomecontributors. The social security `dealï is again more profitable for highincome individuals since they contribute at the maximum basis, with respect tolow income contributors at the minimum basis. This is due to the late entry and a higher survival rate for high income contributors.The system tends to favour women, given that they generally live longer than men and this factor is only partially offset by their lower wages. Married males, given the fact that they have longer life expectancy and leave a pension to their spouse, obtain higher present net transfers too than do single contributors.We close the paper with some comments on the slight impact and moderate effects of proposals for Social Security reform and on how these may change the previously observed redistribution effects.
Resumo:
In this paper we study the reconstruction of a network topology from the values of its betweenness centrality, a measure of the influence of each of its nodes in the dissemination of information over the network. We consider a simple metaheuristic, simulated annealing, as the combinatorial optimization method to generate the network from the values of the betweenness centrality. We compare the performance of this technique when reconstructing different categories of networks –random, regular, small-world, scale-free and clustered–. We show that the method allows an exact reconstruction of small networks and leads to good topological approximations in the case of networks with larger orders. The method can be used to generate a quasi-optimal topology fora communication network from a list with the values of the maximum allowable traffic for each node.
Resumo:
The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 02, 26, 68 and 824 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·11·9), 0·1 (range 00·4), 0·8 (range 0·23·9), 0·2 (range 0·1 1·7) and 1 (range 0·33·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 1021185) mmol/l £ min for EGC-glucuronide, 112 (range 53919) mmol/l £ min for EC-sulphate, 71 (range 26306) mmol/l £ min for EGCG, 40 (range 12258) mmol/l £ min for EC-glucuronide and 14 (range 0·1124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 216), 2 (range 111), 10 (range 213), 3 (range 216) and 2·4 (range 118) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.
Resumo:
The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 0-2, 2-6, 6-8 and 8-24 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·1-1·9), 0·1 (range 0-0·4), 0·8 (range 0·2-3·9), 0·2 (range 0·1 1·7) and 1 (range 0·3-3·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 102-1185) mmol/l £ min for EGC-glucuronide, 112 (range 53-919) mmol/l £ min for EC-sulphate, 71 (range 26-306) mmol/l £ min for EGCG, 40 (range 12-258) mmol/l £ min for EC-glucuronide and 14 (range 0·1-124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 2-16), 2 (range 1-11), 10 (range 2-13), 3 (range 2-16) and 2·4 (range 1-18) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.
Resumo:
The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 0-2, 2-6, 6-8 and 8-24 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·1-1·9), 0·1 (range 0-0·4), 0·8 (range 0·2-3·9), 0·2 (range 0·1 1·7) and 1 (range 0·3-3·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 102-1185) mmol/l £ min for EGC-glucuronide, 112 (range 53-919) mmol/l £ min for EC-sulphate, 71 (range 26-306) mmol/l £ min for EGCG, 40 (range 12-258) mmol/l £ min for EC-glucuronide and 14 (range 0·1-124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 2-16), 2 (range 1-11), 10 (range 2-13), 3 (range 2-16) and 2·4 (range 1-18) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.
Resumo:
The Grande Coupure represents a major terrestrial faunal turnover recorded in Eurasia associated with the overall climate shift at the Eocene-Oligocene transition. During this event, a large number of European Eocene endemic mammals became extinct and new Asian immigrants appeared. The absolute age of the Grande Coupure, however, has remained controversial for decades. The Late Eocene-Oligocene continental record of the Eastern Ebro Basin (NE Spain) constitutes a unique opportunity to build a robust magnetostratigraphy- based chronostratigraphy which can contribute with independent age constraints for this important turnover. This study presents new magnetostratigraphic data of a 495-m-thick section (Moià-Santpedor) that ranges from 36.1 Ma to 33.3 Ma. The integration of the new results with previous litho- bio- and magnetostratigraphic records of the Ebro Basin yields accurate ages for the immediately pre- and post-Grand Coupure mammal fossil assemblages found in the study area, bracketing the Grande Coupure to an age embracing the Eocene-Oligocene transition, with a maximum allowable lag of 0.5 Myr with respect to this boundary. The shift to drier conditions that accompanied the global cooling at the Eocene-Oligocene transition probably determined the sedimentary trends in the Eastern Ebro Basin. The occurrence and expansion of an amalgamated-channel sandstone unit is interpreted as the forced response of the fluvial fan system to the transient retraction of the central-basin lake systems. The new results from the Ebro Basin allow us to revisit correlations for the controversial Eocene-Oligocene record of the Hampshire Basin (Isle of Wight, UK), and their implications for the calibration of the Mammal Palaeogene reference levels MP18 to MP21.
Resumo:
The El Soplao site is a recently-discovered Early Albian locality of the Basque-Cantabrian Basin (northern Spain) that has yielded a number of amber pieces with abundant bioinclusions. The amber-bearing deposit occurs in a non-marine to transitional marine siliciclastic unit (Las Peñosas Formation) that is interleaved within a regressive-transgressive, carbonate-dominated Lower Aptian-Upper Albian marine sequence. The Las Peñosas Formation corresponds to the regressive stage of this sequence and in its turn it splits into two smaller regressive-transgressive cycles. The coal and amber-bearing deposits occur in deltaic-estuarine environments developed during the maximum regressive episodes of these smaller regressive-transgressive cycles. The El Soplao amber shows Fourier Transform Infrared Spectroscopy spectra similar to other Spanish Cretaceous ambers and it is characterized by the profusion of sub-aerial, stalactite-like flows. Well-preserved plant cuticles assigned to the conifer genera Frenelopsis and Mirovia are abundant in the beds associated with amber. Leaves of the ginkgoalean genera Nehvizdya and Pseudotorellia also occur occasionally. Bioinclusions mainly consist of fossil insects of the orders Blattaria, Hemiptera, Thysanoptera, Raphidioptera, Neuroptera, Coleoptera, Hymenoptera and Diptera, although some spiders and spider webs have been observed as well. Some insects belong to groups scarce in the fossil record, such as a new morphotype of the wasp Archaeromma (of the family Mymarommatidae) and the biting midge Lebanoculicoides (of the monogeneric subfamily Lebanoculicoidinae). This new amber locality constitutes a very significant finding that will contribute to improving the knowledge and comprehension of the Albian non-marine paleoarthropod fauna.