37 resultados para Maximal Outerplanar Graph
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Motivated by the work of Mateu, Orobitg, Pérez and Verdera, who proved inequalities of the form $T_*f\lesssim M(Tf)$ or $T_*f\lesssim M^2(Tf)$ for certain singular integral operators $T$, such as the Hilbert or the Beurling transforms, we study the possibility of establishing this type of control for the Cauchy transform along a Lipschitz graph. We show that this is not possible in general, and we give a partial positive result when the graph is substituted by a Jordan curve.
Resumo:
We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: Given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an m-generated group is amenable if and only if the density of the corresponding Cayley graph equals to 2m. We test amenable and non-amenable groups, and also groups for which amenability is unknown. In the latter class we focus on Richard Thompson’s group F.
Resumo:
The division problem consists of allocating an amount M of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, the uniform rule is the unique strategy-proof, efficient, and anonymous rule. Ching and Serizawa (1998) extended this result by showing that the set of single-plateaued preferences is the largest domain, for all possible values of M, admitting a rule (the extended uniform rule) satisfying strategy-proofness, efficiency and symmetry. We identify, for each M and n, a maximal domain of preferences under which the extended uniform rule also satisfies the properties of strategy-proofness, efficiency, continuity, and "tops-onlyness". These domains (called weakly single-plateaued) are strictly larger than the set of single-plateaued preferences. However, their intersection, when M varies from zero to infinity, coincides with the set of single-plateaued preferences.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
El proyecto consiste en un entorno gráfico cuyo fin es el de visualizar, estudiar e interpretar la conservación de código genético existente entre los diferentes genomas. Una interface que permite cargar hasta ocho genomas para ser comparados en detalle, por pares o entre todos ellos a la vez. El gráfico que se muestra en la interfaz, representa los Maximal Unique Matchings entre cada par de genomas, lo que significa coincidencias de la mayor longitud posible no repetidas, en las secuencias de ADN de las especies comparadas. La finalidad es el estudio de las evoluciones que han ido apareciendo entre diferentes organismos o los genes que comparten unas especies con otras.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The usual way to investigate the statistical properties of finitely generated subgroups of free groups, and of finite presentations of groups, is based on the so-called word-based distribution: subgroups are generated (finite presentations are determined) by randomly chosen k-tuples of reduced words, whose maximal length is allowed to tend to infinity. In this paper we adopt a different, though equally natural point of view: we investigate the statistical properties of the same objects, but with respect to the so-called graph-based distribution, recently introduced by Bassino, Nicaud and Weil. Here, subgroups (and finite presentations) are determined by randomly chosen Stallings graphs whose number of vertices tends to infinity. Our results show that these two distributions behave quite differently from each other, shedding a new light on which properties of finitely generated subgroups can be considered frequent or rare. For example, we show that malnormal subgroups of a free group are negligible in the raph-based distribution, while they are exponentially generic in the word-based distribution. Quite surprisingly, a random finite presentation generically presents the trivial group in this new distribution, while in the classical one it is known to generically present an infinite hyperbolic group.
Resumo:
We survey the main theoretical aspects of models for Mobile Ad Hoc Networks (MANETs). We present theoretical characterizations of mobile network structural properties, different dynamic graph models of MANETs, and finally we give detailed summaries of a few selected articles. In particular, we focus on articles dealing with connectivity of mobile networks, and on articles which show that mobility can be used to propagate information between nodes of the network while at the same time maintaining small transmission distances, and thus saving energy.
Resumo:
Este trabajo desarrolla el proceso de diseño e implementación de una interfaz web que permite la exploración en detalle de las relaciones entre genomas completos. La interfaz permite la comparación simultánea de nueve genomas, representando en cada gráfica las relaciones entre cada par de genomas junto los genes identificados de cada uno de ellos. Es capaz de trabajar con genomas del dominio Eukaryota y se adapta a la capacidad de cómputo de la máquina cliente. La información representada son MUMs (Maximal Unique Matching, secuencia máxima y única encontrada en ambos genomas) y SuperMUMs (agrupación de MUMs mediante Approximate String Matching). Los datos son previamente calculados y accesibles desde un servidor web.
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.