10 resultados para Matrix Analytic Methods
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A number of experimental methods have been reported for estimating the number of genes in a genome, or the closely related coding density of a genome, defined as the fraction of base pairs in codons. Recently, DNA sequence data representative of the genome as a whole have become available for several organisms, making the problem of estimating coding density amenable to sequence analytic methods. Estimates of coding density for a single genome vary widely, so that methods with characterized error bounds have become increasingly desirable. We present a method to estimate the protein coding density in a corpus of DNA sequence data, in which a ‘coding statistic’ is calculated for a large number of windows of the sequence under study, and the distribution of the statistic is decomposed into two normal distributions, assumed to be the distributions of the coding statistic in the coding and noncoding fractions of the sequence windows. The accuracy of the method is evaluated using known data and application is made to the yeast chromosome III sequence and to C.elegans cosmid sequences. It can also be applied to fragmentary data, for example a collection of short sequences determined in the course of STS mapping.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The centrifugal liquid membrane (CLM) cell has been utilized for chiroptical studies of liquid-liquid interfaces with a conventional circular dichroism (CD) spectropolarimeter. These studies required the characterization of optical properties of the rotating cylindrical CLM glass cell, which was used under the high speed rotation. In the present study, we have measured the circular and linear dichroism (CD and LD) spectra and the circular and linear birefringence (CB and LB) spectra of the CLM cell itself as well as those of porphyrine aggregates formed at the liquid-liquid interface in the CLM cell, applying Mueller matrix measurement method. From the results, it was confirmed that the CLM-CD spectra of the interfacial porphyrin aggregates observed by a conventional CD spectropolarimeter should be correct irrespective of LD and LB signals in the CLM cell.
Resumo:
Epipolar geometry is a key point in computer vision and the fundamental matrix estimation is the only way to compute it. This article surveys several methods of fundamental matrix estimation which have been classified into linear methods, iterative methods and robust methods. All of these methods have been programmed and their accuracy analysed using real images. A summary, accompanied with experimental results, is given
Resumo:
It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.
Resumo:
Asymptotic chi-squared test statistics for testing the equality ofmoment vectors are developed. The test statistics proposed aregeneralizedWald test statistics that specialize for different settings by inserting andappropriate asymptotic variance matrix of sample moments. Scaled teststatisticsare also considered for dealing with situations of non-iid sampling. Thespecializationwill be carried out for testing the equality of multinomial populations, andtheequality of variance and correlation matrices for both normal andnon-normaldata. When testing the equality of correlation matrices, a scaled versionofthe normal theory chi-squared statistic is proven to be an asymptoticallyexactchi-squared statistic in the case of elliptical data.
Resumo:
Graphical displays which show inter--sample distances are importantfor the interpretation and presentation of multivariate data. Except whenthe displays are two--dimensional, however, they are often difficult tovisualize as a whole. A device, based on multidimensional unfolding, isdescribed for presenting some intrinsically high--dimensional displays infewer, usually two, dimensions. This goal is achieved by representing eachsample by a pair of points, say $R_i$ and $r_i$, so that a theoreticaldistance between the $i$-th and $j$-th samples is represented twice, onceby the distance between $R_i$ and $r_j$ and once by the distance between$R_j$ and $r_i$. Self--distances between $R_i$ and $r_i$ need not be zero.The mathematical conditions for unfolding to exhibit symmetry are established.Algorithms for finding approximate fits, not constrained to be symmetric,are discussed and some examples are given.
Resumo:
This paper analyzes whether standard covariance matrix tests work whendimensionality is large, and in particular larger than sample size. Inthe latter case, the singularity of the sample covariance matrix makeslikelihood ratio tests degenerate, but other tests based on quadraticforms of sample covariance matrix eigenvalues remain well-defined. Westudy the consistency property and limiting distribution of these testsas dimensionality and sample size go to infinity together, with theirratio converging to a finite non-zero limit. We find that the existingtest for sphericity is robust against high dimensionality, but not thetest for equality of the covariance matrix to a given matrix. For thelatter test, we develop a new correction to the existing test statisticthat makes it robust against high dimensionality.
Resumo:
In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formationaccessible in the 1+1 gravity theory consideredis implicit in an S-matrix approach and suggests in this way a possible solution to the problem of information loss.