24 resultados para Mathematical ontology
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We provide some guidelines for deriving new projective hash families of cryptographic interest. Our main building blocks are so called group action systems; we explore what properties of this mathematical primitives may lead to the construction of cryptographically useful projective hash families. We point out different directions towards new constructions, deviating from known proposals arising from Cramer and Shoup's seminal work.
Resumo:
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Resumo:
The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on E. coli have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This model can account for recent experimental observations with E. coli. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion). In addition we can capture quantitatively the main characteristics of the pulse such as the speed and the relative size of tails. This work opens several experimental and theoretical perspectives. Coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance the stiffness of the signal integration process turns out to have a strong effect on collective motion. Furthermore the bottom-up scaling allows to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion.
Resumo:
We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the mathematical model. Our main conclusion is that mathematical and computational models are good complements for research in social sciences. Indeed, while computational models are extremely useful to extend the scope of the analysis to complex scenarios hard to analyze mathematically, formal models can be useful to verify and to explain the outcomes of computational models.
Resumo:
A mathematical model is developed to analyse the combined flow and solidification of a liquid in a small pipe or two-dimensional channel. In either case the problem reduces to solving a single equation for the position of the solidification front. Results show that for a large range of flow rates the closure time is approximately constant, and the value depends primarily on the wall temperature and channel width. However, the ice shape at closure will be very different for low and high fluxes. As the flow rate increases the closure time starts to depend on the flow rate until the closure time increases dramatically, subsequently the pipe will never close.
Resumo:
While the Internet has given educators access to a steady supply of Open Educational Resources, the educational rubrics commonly shared on the Web are generally in the form of static, non-semantic presentational documents or in the proprietary data structures of commercial content and learning management systems.With the advent of Semantic Web Standards, producers of online resources have a new framework to support the open exchange of software-readable datasets. Despite these advances, the state of the art of digital representation of rubrics as sharable documents has not progressed.This paper proposes an ontological model for digital rubrics. This model is built upon the Semantic Web Standards of the World Wide Web Consortium (W3C), principally the Resource Description Framework (RDF) and Web Ontology Language (OWL).
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Analysis and evaluation of techniques for the extraction of classes in the ontology learning process
Resumo:
This paper analyzes and evaluates, in the context of Ontology learning, some techniques to identify and extract candidate terms to classes of a taxonomy. Besides, this work points out some inconsistencies that may be occurring in the preprocessing of text corpus, and proposes techniques to obtain good terms candidate to classes of a taxonomy.
Resumo:
Collaborative activities, in which students actively interact with each other, have proved to provide significant learning benefits. In Computer-Supported Collaborative Learning (CSCL), these collaborative activities are assisted by technologies. However, the use of computers does not guarantee collaboration, as free collaboration does not necessary lead to fruitful learning. Therefore, practitioners need to design CSCL scripts that structure the collaborative settings so that they promote learning. However, not all teachers have the technical and pedagogical background needed to design such scripts. With the aim of assisting teachers in designing effective CSCL scripts, we propose a model to support the selection of reusable good practices (formulated as patterns) so that they can be used as a starting point for their own designs. This model is based on a pattern ontology that computationally represents the knowledge captured on a pattern language for the design of CSCL scripts. A preliminary evaluation of the proposed approach is provided with two examples based on a set of meaningful interrelated patters computationally represented with the pattern ontology, and a paper prototyping experience carried out with two teaches. The results offer interesting insights towards the implementation of the pattern ontology in software tools.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Centralnotations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform.In this way very elaborated aspects of mathematical statistics can be understoodeasily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating,combination of likelihood and robust M-estimation functions are simple additions/perturbations in A2(Pprior). Weighting observations corresponds to a weightedaddition of the corresponding evidence.Likelihood based statistics for general exponential families turns out to have aparticularly easy interpretation in terms of A2(P). Regular exponential families formfinite dimensional linear subspaces of A2(P) and they correspond to finite dimensionalsubspaces formed by their posterior in the dual information space A2(Pprior).The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P.The discussion of A2(P) valued random variables, such as estimation functionsor likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
We start with a generalization of the well-known three-door problem:the n-door problem. The solution of this new problem leads us toa beautiful representation system for real numbers in (0,1] as alternated series, known in the literature as Pierce expansions. A closer look to Pierce expansions will take us to some metrical properties of sets defined through the Pierce expansions of its elements. Finally, these metrical properties will enable us to present 'strange' sets, similar to the classical Cantor set.
Resumo:
This paper includes the derivations of the main expressions in the paper ``The Daily Market for Funds in Europe: Has Something Changed With the EMU?'' by G. Pérez Quirós and H. Rodríguez Mendizábal.
Resumo:
This file contains the complete ontology (OntoProcEDUOC_OKI_Final.owl). At loading time to edit, the OKI ontology corresponding to the implementation level (OntoOKI_DEFINITIVA.owl)must be imported.
Resumo:
Proves de conversió de fòrmules matemàtiques des d'editors de text ofimàtics i des de Làtex. Visionat en HTML i MathML. El millor resultat s'aconsegueix amb MSWord+MathType i IE+MathPlayer.
Resumo:
Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.