35 resultados para Mathematical Cardiovascular Model
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A mathematical model is developed to analyse the combined flow and solidification of a liquid in a small pipe or two-dimensional channel. In either case the problem reduces to solving a single equation for the position of the solidification front. Results show that for a large range of flow rates the closure time is approximately constant, and the value depends primarily on the wall temperature and channel width. However, the ice shape at closure will be very different for low and high fluxes. As the flow rate increases the closure time starts to depend on the flow rate until the closure time increases dramatically, subsequently the pipe will never close.
Resumo:
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Resumo:
The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on E. coli have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This model can account for recent experimental observations with E. coli. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion). In addition we can capture quantitatively the main characteristics of the pulse such as the speed and the relative size of tails. This work opens several experimental and theoretical perspectives. Coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance the stiffness of the signal integration process turns out to have a strong effect on collective motion. Furthermore the bottom-up scaling allows to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion.
Resumo:
We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the mathematical model. Our main conclusion is that mathematical and computational models are good complements for research in social sciences. Indeed, while computational models are extremely useful to extend the scope of the analysis to complex scenarios hard to analyze mathematically, formal models can be useful to verify and to explain the outcomes of computational models.
Resumo:
Sediment composition is mainly controlled by the nature of the source rock(s), and chemical (weathering) and physical processes (mechanical crushing, abrasion, hydrodynamic sorting) during alteration and transport. Although the factors controlling these processes are conceptually well understood, detailed quantification of compositional changes induced by a single process are rare, as are examples where the effects of several processes can be distinguished. The present study was designed to characterize the role of mechanical crushing and sorting in the absence of chemical weathering. Twenty sediment samples were taken from Alpine glaciers that erode almost pure granitoid lithologies. For each sample, 11 grain-size fractions from granules to clay (ø grades &-1 to &9) were separated, and each fraction was analysed for its chemical composition.The presence of clear steps in the box-plots of all parts (in adequate ilr and clr scales) against ø is assumed to be explained by typical crystal size ranges for the relevant mineral phases. These scatter plots and the biplot suggest a splitting of the full grain size range into three groups: coarser than ø=4 (comparatively rich in SiO2, Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and feldspar), finer than ø=8 (comparatively rich in TiO2, MnO, MgO, Fe2O3, mostly related to “mafic” sheet silicates like biotite and chlorite), and intermediate grains sizes (4≤ø &8; comparatively rich in P2O5 and CaO, related to apatite, some feldspar).To further test the absence of chemical weathering, the observed compositions were regressed against three explanatory variables: a trend on grain size in ø scale, a step function for ø≥4, and another for ø≥8. The original hypothesis was that the trend could be identified with weathering effects, whereas each step function would highlight those minerals with biggest characteristic size at its lower end. Results suggest that this assumption is reasonable for the step function, but that besides weathering some other factors (different mechanical behavior of minerals) have also an important contribution to the trend.Key words: sediment, geochemistry, grain size, regression, step function
Resumo:
Viruses rapidly evolve, and HIV in particular is known to be one of the fastest evolving human viruses. It is now commonly accepted that viral evolution is the cause of the intriguing dynamics exhibited during HIV infections and the ultimate success of the virus in its struggle with the immune system. To study viral evolution, we use a simple mathematical model of the within-host dynamics of HIV which incorporates random mutations. In this model, we assume a continuous distribution of viral strains in a one-dimensional phenotype space where random mutations are modelled by di ffusion. Numerical simulations show that random mutations combined with competition result in evolution towards higher Darwinian fitness: a stable traveling wave of evolution, moving towards higher levels of fi tness, is formed in the phenoty space.
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 differentcompositional datasets and modelled the first canonical variable using a segmented regression modelsolely based on an observation about the scatter plots. In this paper, multiple linear regressions areapplied to different datasets to confirm the validity of our proposed model. In addition to dating theunknown tephras by calibration as discussed previously, another method of mapping the unknown tephrasinto samples of the reference set or missing samples in between consecutive reference samples isproposed. The application of these methodologies is demonstrated with both simulated and real datasets.This new proposed methodology provides an alternative, more acceptable approach for geologists as theirfocus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age ofunknown tephra.Kew words: Tephrochronology; Segmented regression
Resumo:
A four compartment model of the cardiovascular system is developed. To allow for easy interpretation and to minimise the number of parameters, an effort was made to keep the model as simple as possible. A sensitivity analysis is first carried out to determine which are the most important model parameters to characterise the blood pressure signal. A four stage process is then described which accurately determines all parameter values. This process is applied to data from three patients and good agreement is shown in all cases.
Resumo:
We present a study of the continuous-time equations governing the dynamics of a susceptible infected-susceptible model on heterogeneous metapopulations. These equations have been recently proposed as an alternative formulation for the spread of infectious diseases in metapopulations in a continuous-time framework. Individual-based Monte Carlo simulations of epidemic spread in uncorrelated networks are also performed revealing a good agreement with analytical predictions under the assumption of simultaneous transmission or recovery and migration processes
Resumo:
Most integrodifference models of biological invasions are based on the nonoverlapping-generations approximation. However, the effect of multiple reproduction events overlapping generations on the front speed can be very important especially for species with a long life spam . Only in one-dimensional space has this approximation been relaxed previously, although almost all biological invasions take place in two dimensions. Here we present a model that takes into account the overlapping generations effect or, more generally, the stage structure of the population , and we analyze the main differences with the corresponding nonoverlappinggenerations results
Resumo:
Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail
Resumo:
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model
Resumo:
Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.
Resumo:
The mathematical representation of Brunswik s lens model has been usedextensively to study human judgment and provides a unique opportunity to conduct ameta-analysis of studies that covers roughly five decades. Specifically, we analyzestatistics of the lens model equation (Tucker, 1964) associated with 259 different taskenvironments obtained from 78 papers. In short, we find on average fairly high levelsof judgmental achievement and note that people can achieve similar levels of cognitiveperformance in both noisy and predictable environments. Although overall performancevaries little between laboratory and field studies, both differ in terms of components ofperformance and types of environments (numbers of cues and redundancy). An analysisof learning studies reveals that the most effective form of feedback is information aboutthe task. We also analyze empirically when bootstrapping is more likely to occur. Weconclude by indicating shortcomings of the kinds of studies conducted to date, limitationsin the lens model methodology, and possibilities for future research.
Resumo:
In a previous paper a novel Generalized Multiobjective Multitree model (GMM-model) was proposed. This model considers for the first time multitree-multicast load balancing with splitting in a multiobjective context, whose mathematical solution is a whole Pareto optimal set that can include several results than it has been possible to find in the publications surveyed. To solve the GMM-model, in this paper a multi-objective evolutionary algorithm (MOEA) inspired by the Strength Pareto Evolutionary Algorithm (SPEA) is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network, with two simultaneous data flows