8 resultados para Marine Ecosystems Analysis Program

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m22). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of correspondence analysis to square asymmetrictables is often unsuccessful because of the strong role played by thediagonal entries of the matrix, obscuring the data off the diagonal. A simplemodification of the centering of the matrix, coupled with the correspondingchange in row and column masses and row and column metrics, allows the tableto be decomposed into symmetric and skew--symmetric components, which canthen be analyzed separately. The symmetric and skew--symmetric analyses canbe performed using a simple correspondence analysis program if the data areset up in a special block format.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most structure-building organisms in rocky benthic communities are surface-dependent because their energy inputs depend mainly on the surface they expose to water. Two photosynthetic strategies, divided into calcareous and non calcareous algae, strict suspension-feeders and photosynthetic suspension feeders (e.g. hermatypic corals) are the four main strategies evolutively acquired by benthic organisms. Competition between those strategies occur in relation to productivity of the different species, in such a way that, for given environmental conditions, species with a higher growth (P/B ratio) would dominate. At a worldwide scale, littoral marine benthos can he considered to fit into the four fields defined by two main axes: the first, relates to productivity and relies atrophic and oligotrophic waters and the second is defined by the degree of environmental variability or seasonality (from high to low). Coral reefs (marine ecosystems dominated by photosynthetic suspension feeders) develop in the space of oligotrophic areas with low variability, while kelp beds (marine ecosystem dominated by large, non calcareous algae) are to be found only in eutrophic places with a high variability. The space of eutrophic waters with a low variability do not has specially adapted, high structured, benthic marine ecosystems, and in these conditions opportunistic algae and animals predominate. Finally, photophilic mediterranean benthos -devoid of kelps and without hermatypic corals- typifies the field of oligotrophic areas with high variability; in its more genuine aspect, Mediterranean benthos is represented by small algae with a high percentage of calcareous thallii. In all cases strict suspension-feeders compete successfully with photosynthetic organisms only in situations of low irradiances or very high inputs of POM. In its turn, Mediterranean rocky benthos, in spite of its relative uniformity, is geographically organized along the same axes. The Gulf of Lions and the insular bottoms (Balearic Islands, for example) would correspond to the extremes of eutrophic-high variability areas and oligotrophic-low variability areas, respectively. Irradiance, nutrient and POM concentration, and hydrodynamism are the three variables which mainly affect the distribution of the different surface-dependent strategies, and thus, these parameters are of paramount interest for understanding the trophic structure of Mediterranean benthic communities. In environments non limited by light, nutrient availability, defined as the product between nutrient -POM concentration and hydrodynamism, states the dominance of calcareous versus non calcareous algae. Calcareous algae dominate in oligotrophic waters while non-calcareous algae dominate in moderately eutrophic waters. In light-limited environments, passive suspension feeders (octocorallaria, gorgonians) become dominant species if POM availability is enhanced by a high hydrodynamism (strong currents); in waters with a low charge of POM organisms of other groups, mainly active suspension feeders, predominate (sponges, bryozoans, scleractiniarians). In any case, there always exists a very variable bathymetric zone, depending on light attenuation and nutrient-POM availability, where encrusting calcareous algae strongly compete with suspension feeders (coralligenous).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how marine predators interact is a scientific challenge. In marine ecosystems, segregation in feeding habits has been largely described as a common mechanism to allow the coexistence of several competing marine predators. However, little is known about the feeding ecology of most species of chondrichthyans, which play a pivotal role in the structure of marine food webs worldwide. In this study, we examined the trophic ecology of 3 relatively abundant chondrichthyans coexisting in the Mediterranean Sea: the blackmouth catshark Galeus melastomus , the velvet belly lanternshark Etmopterus spinax and the rabbit fish Chimaera monstrosa. To examine their trophic ecology and interspecific differences in food habits, we combined the analysis of stomach content and stable isotopes. Our results highlighted a trophic segregation between C. monstrosa and the other 2 species. G. melastomus showed a diet composed mainly of cephalopods, while E. spinax preyed mainly on shrimps and C. monstrosa on crabs. Interspecific differences in the trophic niche were likely due to different feeding capabilities and body size. Each species showed different isotopic niche space and trophic level. Specifically, C. monstrosa showed a higher trophic level than E. spinax and G. melastomus. The high trophic levels of the 3 species highlighted their important role as predators in the marine food web. Our results illustrate the utility of using complementary approaches that provide information about the feeding behaviour at short (stomach content) and long-term scales (stable isotopes), which could allow more efficient monitoring of marine food-web changes in the study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a la Napier University, Gran Bretanya, des d’octubre del 2006 a febrer del 2007. Els ecosistemes marins costaners són sistemes complexos, tant pel que fa a l’estructura de les comunitats que hi viuen com per la seva dinàmica, amb processos que impliquen múltiples escales d’espai i de temps. Aquesta complexitat natural s’ha incrementat al llarg de les darreres dècades com a conseqüència directa del creixement urbà al litoral. L’augment de població a les zones costaneres ha comportat no només un augment generalitzat en l’aport de nutrients inorgànics al mar, sinó també una forta intervenció sobre la línia de costa –construcció de ports, dics- i canvis en el moviment de les masses d’aigua. En aquest context, la interacció entre els factors turbulència-nutrients a la zona costanera pot ser clau per a millorar la nostra comprensió sobre el funcionament dels sistemes planctònics i, en darrer terme, per a derivar-ne mesures de gestió. A diferència de treballs experimentals previs, que adrecen els efectes de la turbulència i/o els nutrients sobre grups específics de plàncton, per avaluar la resposta conjunta de la comunitat necessitem paràmetres integradors, que relacionin diversos processos i donin una idea general de l’estat i funcionament de l’ecosistema. Durant l’estada de recerca alguns dels algoritmes que es fan servir per la costa escocesa van reformular-se i recalcular-se amb dades de la Mediterrània (dades procedents de la badia de Blanes i de la costa de Barcelona). Els resultats mostren una capacitat de resposta molt ràpida del plàncton als increments de nutrients, una variabilitat anual marcada (quant a diversitat d’organismes planctònics) i apunten el fòsfor com a principal limitant del creixement dels organismes en aquesta zona de la Mediterrània.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many terrestrial and marine systems are experiencing accelerating decline due to the effects of global change. This situation has raised concern about the consequences of biodiversity losses for ecosystem function, ecosystem service provision, and human well-being. Coastal marine habitats are a main focus of attention because they harbour a high biological diversity, are among the most productive systems of the world and present high anthropogenic interaction levels. The accelerating degradation of many terrestrial and marine systems highlights the urgent need to evaluate the consequence of biodiversity loss. Because marine biodiversity is a dynamic entity and this study was interested global change impacts, this study focused on benthic biodiversity trends over large spatial and long temporal scales. The main aim of this project was to investigate the current extent of biodiversity of the high diverse benthic coralligenous community in the Mediterranean Sea, detect its changes, and predict its future changes over broad spatial and long temporal scales. These marine communities are characterized by structural species with low growth rates and long life spans; therefore they are considered particularly sensitive to disturbances. For this purpose, this project analyzed permanent photographic plots over time at four locations in the NW Mediterranean Sea. The spatial scale of this study provided information on the level of species similarity between these locations, thus offering a solid background on the amount of large scale variability in coralligenous communities; whereas the temporal scale was fundamental to determine the natural variability in order to discriminate between changes observed due to natural factors and those related to the impact of disturbances (e.g. mass mortality events related to positive thermal temperatures, extreme catastrophic events). This study directly addressed the challenging task of analyzing quantitative biodiversity data of these high diverse marine benthic communities. Overall, the scientific knowledge gained with this research project will improve our understanding in the function of marine ecosystems and their trajectories related to global change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm² for PCA and 2500 cm²for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems