167 resultados para Magnetic oxides
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The transport and magnetotransport properties of the metallic and ferromagnetic SrRuO3 (SRO) and the metallic and paramagnetic LaNiO3 (LNO) epitaxial thin films have been investigated in fields up to 55 T at temperatures down to 1.8 K . At low temperatures both samples display a well-defined resistivity minimum. We argue that this behavior is due to the increasing relevance of quantum corrections to the conductivity (QCC) as temperature is lowered; this effect being particularly relevant in these oxides due to their short mean free path. However, it is not straightforward to discriminate between contributions of weak localization and renormalization of electron-electron interactions to the QCC through temperature dependence alone. We have taken advantage of the distinct effect of a magnetic field on both mechanisms to demonstrate that in ferromagnetic SRO the weak-localization contribution is suppressed by the large internal field leaving only renormalized electron-electron interactions, whereas in the nonmagnetic LNO thin films the weak-localization term is relevant.
Resumo:
We report here on the growth of NiFe2O4 epitaxial thin films of different thickness (3 nm ¿ t ¿ 32 nm) on single crystalline substrates having spinel (MgAl2O4) or perovskite (SrTiO3) structure. Ultrathin films, grown on any of those substrates, display a huge enhancement of the saturation magnetization: we will show that partial cationic inversion may account for this enhancement, although we will argue that suppression of antiparallel collinear spin alignment due to size-effects cannot be excluded. Besides, for thicker films, the magnetization of films on MAO is found to be similar to that of bulk ferrite; in contrast, the magnetization of films on STO is substantially lower than bulk. We discuss on the possible mechanisms leading to this remarkable difference of magnetization.
Resumo:
The structure, magnetic response, and dielectric response of the grown epitaxial thin films of the orthorhombic phase of YMnO3 oxide on Nb:SrTiO3 (001) substrates have been measured. We have found that a substrate-induced strain produces an in-plane compression of the YMnO3 unit cell. The magnetization versus temperature curves display a significant zero-field cooling (ZFC)-field cooling hysteresis below the Nel temperature (TN 45 K). The dielectric constant increases gradually (up to 26%) below the TN and mimics the ZFC magnetization curve. We argue that these effects could be a manifestation of magnetoelectric coupling in YMnO3 thin films and that the magnetic structure of YMnO3 can be controlled by substrate selection and/or growth conditions.
Resumo:
We report here on the magnetic properties of compounds of composition Fe1−xCrxSbO4 and Fe1−xGaxSbO4. The introduction of paramagnetic Cr3+ and diamagnetic Ga3+ into the rutile‐related iron antimonate lattice does not destroy the antisite atomic ordering which exists in iron antimonate of composition FeSbO4. The initial slope of the Curie temperature dependence on x is similar in both series, indicating that Fe3+‐Cr3+ interactions are very small. The magnetic susceptibility measurements recorded from the compounds of composition Fe1−xCrxSbO4, x<0.4, and Fe0.9Ga0.1SbO4 show them to behave as spin glasses at low temperatures. The inhibition of compounds of the type Fe1−xCrxSbO4, x>0.4, and Fe1−xGaxSbO4, x>0.1 to undergo a spin‐glass transition above 4.2 K is associated with a dilution effect.
Resumo:
The possible coexistence of ferromagnetism and charge/orbital order in Bi3/4Sr1/4MnO3 has been investigated. The manganite Bi0.75Sr0.25MnO3, with commensurate charge balance, undergoes an electronic transition at TCO~600 K that produces a longrange modulation with double periodicity along a and c axis, and unusual anisotropic evolution of the lattice parameters. The previously proposed ferromagnetic properties of this new ordered phase were studied by magnetometry and diffraction techniques. In zero field the magnetic structure is globally antiferromagnetic, ruling out the apparition of spontaneous ferromagnetism. However, the application of magnetic fields produces a continuous progressive canting of the moments, inducing a ferromagnetic phase even for relatively small fields (H<<1 T). Application of pulsed high fields produces a remarkable and reversible spin polarization (under 30 T, the ferromagnetic moment is ~3 ¿B/Mn, without any sign of charge order melting). The coexistence of ferromagnetism and charge order at low and very-high fields is a remarkable property of this system.
Resumo:
This work presents the functional characterisation of a protein phosphatase 2A (PP2A) catalytic subunit obtained by genetic engineering and its conjugation to magnetic particles (MPs) via metal coordination chemistry for the subsequent development of assays for diarrheic lipophilic marine toxins. Colorimetric assays with free enzyme have allowed the determination of the best enzyme activity stabiliser, which is glycerol at 10%. They have also demonstrated that the recombinant enzyme can be as sensitive towards okadaic acid (OA) (LOD=2.3μg/L) and dinophysistoxin-1 (DTX-1) (LOD=15.2μg/L) as a commercial PP2A and, moreover, it has a higher operational stability, which makes possible to perform the protein phosphatase inhibition assay (PPIA) with a lower enzyme amount. Once conjugated to MPs, the PP2A catalytic subunit still retains its enzyme activity and it can also be inhibited by OA (LOD=30.1μg/L).
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
Introducción y objetivos. Se ha señalado que, en la miocardiopatía hipertrófica (MCH), la desorganización de las fibras regionales da lugar a segmentos en los que la deformación es nula o está gravemente reducida, y que estos segmentos tienen una distribución no uniforme en el ventrículo izquierdo (VI). Esto contrasta con lo observado en otros tipos de hipertrofia como en el corazón de atleta o la hipertrofia ventricular izquierda hipertensiva (HVI-HT), en los que puede haber una deformación cardiaca anormal, pero nunca tan reducida como para que se observe ausencia de deformación. Así pues, proponemos el empleo de la distribución de los valores de strain para estudiar la deformación en la MCH. Métodos. Con el empleo de resonancia magnética marcada (tagged), reconstruimos la deformación sistólica del VI de 12 sujetos de control, 10 atletas, 12 pacientes con MCH y 10 pacientes con HVI-HT. La deformación se cuantificó con un algoritmo de registro no rígido y determinando los valores de strain sistólico máximo radial y circunferencial en 16 segmentos del VI. Resultados. Los pacientes con MCH presentaron unos valores medios de strain significativamente inferiores a los de los demás grupos. Sin embargo, aunque la deformación observada en los individuos sanos y en los pacientes con HVI-HT se concentraba alrededor del valor medio, en la MCH coexistían segmentos con contracción normal y segmentos con una deformación nula o significativamente reducida, con lo que se producía una mayor heterogeneidad de los valores de strain. Se observaron también algunos segmentos sin deformación incluso en ausencia de fibrosis o hipertrofia. Conclusiones. La distribución de strain caracteriza los patrones específicos de deformación miocárdica en pacientes con diferentes etiologías de la HVI. Los pacientes con MCH presentaron un valor medio de strain significativamente inferior, así como una mayor heterogeneidad de strain (en comparación con los controles, los atletas y los pacientes con HVI-HT), y tenían regiones sin deformación.
Resumo:
We report here on the magnetic properties of ZnO:Mn- and ZnO:Co-doped nanoparticles. We have found that the ferromagnetism of ZnO:Mn can be switched on and off by consecutive low-temperature annealings in O2 and N2, respectively, while the opposite phenomenology was observed for ZnO:Co. These results suggest that different defects (presumably n-type for ZnO:Co and p-type for ZnO:Mn) are required to induce a ferromagnetic coupling in each case. We will argue that ferromagnetism is likely to be restricted to a very thin, nanometric layer at the grain surface. These findings reveal and give insight into the dramatic relevance of surface effects to the occurrence of ferromagnetism in ZnO-doped oxides.
Resumo:
We report the design and validation of simple magnetic tweezers for oscillating ferromagnetic beads in the piconewton and nanometer scales. The system is based on a single pair of coaxial coils operating in two sequential modes: permanent magnetization of the beads through a large and brief pulse of magnetic field and generation of magnetic gradients to produce uniaxial oscillatory forces. By using this two step method, the magnetic moment of the beads remains constant during measurements. Therefore, the applied force can be computed and varies linearly with the driving signal. No feedback control is required to produce well defined force oscillations over a wide bandwidth. The design of the coils was optimized to obtain high magnetic fields (280 mT) and gradients (2 T/m) with high homogeneity (5% variation) within the sample. The magnetic tweezers were implemented in an inverted optical microscope with a videomicroscopy-based multiparticle tracking system. The apparatus was validated with 4.5 ¿m magnetite beads obtaining forces up to ~2 pN and subnanometer resolution. The applicability of the device includes microrheology of biopolymer and cell cytoplasm, molecular mechanics, and mechanotransduction in living cells.
Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation.
Resumo:
Co-Ti-Sn-Ge substituted M-type bariumhexaferrite powders with mean grain sizes between about 10 nm and about 1 ¿m and a narrow size distribution were prepared reproducibly by means of a modified glass crystallization method. At annealing temperatures between 560 and 580°C of the amorphous flakes nanocrystalline particles grow. They behave superparamagnetically at room temperature and change into stable magnetic single domains at lower temperatures. The magnetic volume of the powders is considerably less than the geometric one. However, the effective anisotropy fields are larger by a Factor of two to three.