15 resultados para Low concentrations
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Estudi elaborat a partir d’una estada al Stony Brook University al juliol del 2006. El RbTiOPO4 (RTP) monocristal•lí és un material d' òptica no lineal molt rellevant i utilitzat en la tecnologia làser actual, químicament molt estable i amb unes propietats físiques molt destacades, entre elles destaquen els alts coeficients electro-òptics i l'alt llindar de dany òptic que presenta. En els últims anys s’està utilitzant tecnològicament en aplicacions d'òptica no lineal en general i electro-òptiques en particular. En alguns casos ja ha substituït, millorant prestacions, a materials tals com el KTP o el LNB(1). Dopant RTP amb ions lantànids (Ln3+) (2-4), el material es converteix en un material làser auto-doblador de freqüència, combinant les seves propietats no lineals amb les de matriu làser. El RTP genera radiació de segon harmònic (SHG) a partir d’un feix fonamental amb longituds d’ona inferiors a 990 nm, que és el límit que presenta el KTP.La determinació de la ubicació estructural i l’estudi de l'entorn local del ions actius làser és de fonamental importància per a la correcta interpretació de les propietats espectroscòpiques d’aquest material. Mesures de difracció de neutrons sobre mostra de pols cristal•lí mostren que els ions Nb5+ i Ln3+ només substitueixin posicions de Ti4+ (8-9). Estudis molt recents d'EPR (electron paramagnetic resonance) semblen indicar que quan la concentració d'ió Ln3+ es baixa, aquest ió presenta la tendència a substituir l'ió alcalí present a l'estructura (10).Després dels resultats obtinguts en el present treball a partir de la tècnica EXAFS a la instal•lació sincrotò del Brookhaven National Laboratory/State University of New York (Stony Brook) es pot concloure definitivament que els ions Nb s’ubiquen en la posició Ti (1) i que els ions Yb3+ es distribueixen paritariament en les dues posicions del Ti (1 i 2). Aquests resultats aporten una valuosa informació per a la correcta interpretació dels espectres, tant d’absorció com d’emissió, del material i per la avaluació dels paràmetres del seu comportament durant l'acció làser.
Resumo:
La determinació de compostos orgànics contaminants en aigües residuals d’origen urbà i industrial és un tema que ha suscitat un creixent interès, tant des del punt de vista del problema mediambiental que es deriva de l’abocament d’aquestes aigües al medi aquàtic públic com des de la perspectiva de reutilització de les aigües tractades en processos industrials. La majoria d’aquests contaminants no s’eliminen completament en plantes de tractament d’aigües convencionals, pel que s’han de controlar. Aquest fet implica desenvolupar nous processos de tractament que permetin millorar l'eficiència de l'eliminació de les plantes de tractament convencionals. Per tal d'investigar la presència d'aquests compostos contaminants a baixes concentracions és necessari desenvolupar nous mètodes analítics altament sensibles. En el nostre projecte s'han desenvolupat diferents mètodes analítics per determinar compostos orgànics contaminants en aigües residuals provinents de plantes de tractament d'aigües industrials, urbanes i plantes potabilitzadores, utilizant principalment la microextracció en fase sòlida (SPME) seguida de la cromatografia de gasos acoblada a un espectròmetre de masses (GC-MS). S'ha estudiat la presència de diferents famílies de compostos en aquestes aigües, com són: ftalats, amines alifàtiques primàries i nitrosamines. A més a més, s'han desenvolupat mètodes analítics per determinar amines alifàtiques primàries en llots actius provinents de diferents tipus de plantes de tractament d'aigües i plantes potabilitzadores.
Resumo:
Low concentrations of elements in geochemical analyses have the peculiarity of beingcompositional data and, for a given level of significance, are likely to be beyond thecapabilities of laboratories to distinguish between minute concentrations and completeabsence, thus preventing laboratories from reporting extremely low concentrations of theanalyte. Instead, what is reported is the detection limit, which is the minimumconcentration that conclusively differentiates between presence and absence of theelement. A spatially distributed exhaustive sample is employed in this study to generateunbiased sub-samples, which are further censored to observe the effect that differentdetection limits and sample sizes have on the inference of population distributionsstarting from geochemical analyses having specimens below detection limit (nondetects).The isometric logratio transformation is used to convert the compositional data in thesimplex to samples in real space, thus allowing the practitioner to properly borrow fromthe large source of statistical techniques valid only in real space. The bootstrap method isused to numerically investigate the reliability of inferring several distributionalparameters employing different forms of imputation for the censored data. The casestudy illustrates that, in general, best results are obtained when imputations are madeusing the distribution best fitting the readings above detection limit and exposes theproblems of other more widely used practices. When the sample is spatially correlated, itis necessary to combine the bootstrap with stochastic simulation
Resumo:
Dynamic Nuclear Polarization (DNP) is an emerging technique that could revolutionize the NMR study of small molecules at very low concentrations by the increase in sensitivity that results from transfer of polarization between electronic and nuclear spins. Although the underlying physics has been known for a long time, in the last few years there has been a lot of excitement on the chemistry and biology NMR community caused by the demonstration that the highly polarized nuclei that are prepared in solid state at very low temperatures (1-2 K) could be rapidly transferred to liquid samples at room temperature and studied in solution by conventional NMR techniques. In favorable cases several order of magnitude increases in sensitivity have been achieved. The technique is now mature enough that a commercial instrument is available. The efficiency of DNP depends on two crucial aspects: i) the efficiency of the nuclear polarization process and ii) the efficiency of the transfer from the initial solid state to the fluid state in which NMR is measured. The preferred areas of application (iii) will be dictated by situations in which the low concentration of the sample or its intrinsic low receptivity are the limiting factors .
Resumo:
Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M) and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS) to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor), jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis.
Resumo:
We investigated the effects of five allyl esters, two aromatic (allyl cinnamate and allyl 2-furoate) and three aliphatic (allyl hexanoate, allyl heptanoate, and allyl octanoate) in established insect cell lines derived from different species and tissues. We studied embryonic cells of the fruit fly Drosophila melanogaster (S2) (Diptera) and the beet armyworm Spodoptera exigua (Se4) (Lepidoptera), fat body cells of the Colorado potato beetle Leptinotarsa decemlineata (CPB) (Coleoptera), ovarian cells of the silkmoth Bombyx mori (Bm5), and midgut cells of the spruce budworm Choristoneura fumiferana (CF203) (Lepidoptera). Cytotoxicity was determined with use of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and trypan blue. In addition, we tested the entomotoxic action of allyl cinnamate against the cotton leafworm Spodoptera littoralis .The median (50%) cytotoxic concentrations (EC50s) of the five allyl esters in the MTT bioassays ranged between 0.25 and 27 mM with significant differences among allyl esters (P = 0.0012), cell lines (P < 0.0001), and the allyl estercell line interaction (P < 0.0001). Allyl cinnamate was the most active product, and CF203 the most sensitive cell line. In the trypan blue bioassays, cytotoxicity was produced rapidly and followed the same trend observed in the MTT bioassay. In first instars of S. littoralis, allyl cinnamate killed all larvae at 0.25% in the diet after 1 day, while this happened in third instars after 5 days. The LC50 in first instars was 0.08%. In addition, larval weight gain was reduced (P < 0.05) after 1 day of feeding on diet with 0.05%. In conclusion, the data provide evidence of the significant but differential cytotoxicity among allyl esters in insect cells of different species and tissues. Midgut cells show high sensitivity, indicating the insect midgut as a primary target tissue. Allyl cinnamate caused rapid toxic effects in S. littoralis larvae at low concentrations, suggesting further potential for use in pest control.
Resumo:
Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications.
Resumo:
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.
Resumo:
Proteasome inhibitors, used in cancer treatment for their proapoptotic effects, have anti-inflammatory and antifibrotic effects on animal models of various inflammatory and fibrotic diseases. Their effects in cells from patients affected by either inflammatory or fibrotic diseases have been poorly investigated. Nasal polyposis is a chronic inflammatory disease of the sinus mucosa characterized by tissue inflammation and remodeling. We tested the hypothesis that proteasome inhibition of nasal polyp fibroblasts might reduce their proliferation and inflammatory and fibrotic response. Accordingly, we investigated the effect of the proteasome inhibitor Z-Leu-Leu-Leu-B(OH)2 (MG262) on cell viability and proliferation and on the production of collagen and inflammatory cytokines in nasal polyp and nasal mucosa fibroblasts obtained from surgery specimens. MG262 reduced the viability of nasal mucosa and polyp fibroblasts concentration- and time-dependently, with marked effects after 48 h of treatment. The proteasome inhibitor bortezomib provoked a similar effect. MG262-induced cell death involved loss of mitochondrial membrane potential, caspase-3 and poly(ADP-ribose) polymerase activation, induction of c-Jun phosphorylation, and mitogen-activated protein kinase phosphatase-1 expression. Low concentrations of MG262 provoked growth arrest, inhibited DNA replication and retinoblastoma phosphorylation, and increased expression of the cell cycle inhibitors p21 and p27. MG262 concentration-dependently inhibited basal and transforming growth factor-β-induced collagen mRNA expression and interleukin (IL)-1β-induced production of IL-6, IL-8, monocyte chemoattractant protein-1, regulated on activation normal T cell expressed and secreted, and granulocyte/macrophage colony-stimulating factor in both fibroblast types. MG262 inhibited IL-1β/tumor necrosis factor-α-induced activation of nuclear factor-κB. We conclude that noncytotoxic treatment with MG262 reduces the proliferative, fibrotic, and inflammatory response of nasal fibroblasts, whereas high MG262 concentrations induce apoptosis.
Resumo:
Antimicrobial peptides offer a new class of therapeutic agents to which bacteria may not be able todevelop genetic resistance, since their main activity is in the lipid component of the bacterial cell mem-brane. We have developed a series of synthetic cationic cyclic lipopeptides based on natural polymyxin,and in this work we explore the interaction of sp-85, an analog that contains a C12 fatty acid at theN-terminus and two residues of arginine. This analog has been selected from its broad spectrum antibac-terial activity in the micromolar range, and it has a disruptive action on the cytoplasmic membrane ofbacteria, as demonstrated by TEM. In order to obtain information on the interaction of this analog withmembrane lipids, we have obtained thermodynamic parameters from mixed monolayers prepared withPOPG and POPE/POPG (molar ratio 6:4), as models of Gram positive and Gram negative bacteria, respec-tively. LangmuirBlodgett films have been extracted on glass plates and observed by confocal microscopy,and images are consistent with a strong destabilizing effect on the membrane organization induced bysp-85. The effect of sp-85 on the membrane is confirmed with unilamelar lipid vesicles of the same com-position, where biophysical experiments based on fluorescence are indicative of membrane fusion andpermeabilization starting at very low concentrations of peptide and only if anionic lipids are present.Overall, results described here provide strong evidence that the mode of action of sp-85 is the alterationof the bacterial membrane permeability barrier.
Resumo:
Among increasingly used pharmaceutical products, β-blockers have been commonly reported at low concentrations in rivers and littoral waters of Europe and North America. Little is known about the toxicity of these chemicals in freshwater ecosystems while their presence may lead to chronic pollution. Hence, in this study the acute toxicity of 3 β-blockers: metoprolol, propranolol and atenolol on fluvial biofilms was assessed by using several biomarkers. Some were indicative of potential alterations in biofilm algae (photosynthetic efficiency), and others in biofilm bacteria (peptidase activity, bacterial mortality). Propranolol was the most toxic β-blocker, mostly affecting the algal photosynthetic process. The exposure to 531 μg/L of propranolol caused 85% of inhibition of photosynthesis after 24 h. Metoprolol was particularly toxic for bacteria. Though estimated No-Effect Concentrations (NEC) were similar to environmental concentrations, higher concentrations of the toxic (503 μg/L metoprolol) caused an increase of 50% in bacterial mortality. Atenolol was the least toxic of the three tested β-blockers. Effects superior to 50% were only observed at very high concentration (707 mg/L). Higher toxicity of metoprolol and propranolol might be due to better absorption within biofilms of these two chemicals. Since β-blockers are mainly found in mixtures in rivers, their differential toxicity could have potential relevant consequences on the interactions between algae and bacteria within river biofilms
Resumo:
Bubble formation in solutions of 3He and 4He is studied within a density-functional approach. In particular, the temperature dependence of the cavitation pressure for different 3He concentrations is calculated at low temperatures and compared to that of pure 4He. The presence of Andreev states lowers the surface tension and, consequently, nucleation barriers are drastically reduced. This fact means that even at low 3He concentrations the cavitation process takes place at higher pressures than the spinodal pressure, which is not the case for pure 4He.
Resumo:
ABSTRACT Background: Chronic obstructive pulmonary disease (COPD) is characterised by an abnormal inflammatory response mainly to cigarette smoke that flares up during exacerbations of the disease (ECOPD). Reduced activity of histone deacetylases (HDAC) contributes to enhanced inflammation in stable COPD. It was hypothesised that HDAC activity is further reduced during ECOPD and that theophylline, an HDAC activator, potentiates the antiinflammatory effect of steroids in these patients. A study was performed to investigate HDAC activity during ECOPD and the effects of theophylline on the anti-inflammatory effects of steroids in a randomised single-blind controlled study. Methods: 35 patients hospitalised with ECOPD and treated according to international guidelines (including systemic steroids) were randomised to receive or not to receive low-dose oral theophylline (100 mg twice daily). Before treatment and 3 months after discharge, HDAC and nuclear factor-kB (NF-kB) activity in sputum macrophages, the concentration of nitric oxide in exhaled air (eNO) and total antioxidant status (TAS), tumour necrosis factor a (TNFa), interleukin (IL)-6 and IL8 levels in sputum supernatants were measured. Results: Patients receiving standard therapy showed decreased NF-kB activity, eNO concentration and sputum levels of TNFa, IL6 and IL8, as well as increased TAS during recovery of ECOPD, but HDAC activity did not change. The addition of low-dose theophylline increased HDAC activity and further reduced IL8 and TNFa concentrations. Conclusions: During ECOPD, low-dose theophylline increases HDAC activity and improves the anti-inflammatory effects of steroids.
Resumo:
The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin α-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin α-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly-). Generation of Hly- clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly- clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly- derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly- clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.
Resumo:
Olive oil decreases the risk of CVD. This effect may be due to the fatty acid profile of the oil, but it may also be due to its antioxidant content which differs depending on the type of olive oil. In this study, the concentrations of oleic acid and antioxidants (phenolic compounds and vitamin E) in plasma and LDL were compared after consumption of three similar olive oils, but with differences in their phenolic content. Thirty healthy volunteers participated in a placebo-controlled, double-blind, crossover, randomized supplementation trial. Virgin, common, and refined olive oils were administered during three periods of 3 weeks separated by a 2-week washout period. Participants were requested to ingest a daily dose of 25 ml raw olive oil, distributed over the three meals of the day, during intervention periods. All three olive oils caused an increase in plasma and LDL oleic acid (P,0·05) content. Olive oils rich in phenolic compounds led to an increase in phenolic compounds in LDL (P,0·005). The concentration of phenolic compounds in LDL was directly correlated with the phenolic concentration in the olive oils. The increase in the phenolic content of LDL could account for the increase of the resistance of LDL to oxidation, and the decrease of the in vivo oxidized LDL, observed in the frame of this trial. Our results support the hypothesis that a daily intake of virgin olive oil promotes protective LDL changes ahead of its oxidation.