7 resultados para Loss and Delay System
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.
Resumo:
This paper proposes a very simple method for increasing the algorithm speed for separating sources from PNL mixtures or invertingWiener systems. The method is based on a pertinent initialization of the inverse system, whose computational cost is very low. The nonlinear part is roughly approximated by pushing the observations to be Gaussian; this method provides a surprisingly good approximation even when the basic assumption is not fully satisfied. The linear part is initialized so that outputs are decorrelated. Experiments shows the impressive speed improvement.
Resumo:
The present paper reports a bacteria autonomous controlled concentrator prototype with a user-friendly interface for bench-top applications. It is based on a micro-fluidic lab-on-a-chip and its associated custom instrumentation, which consists in a dielectrophoretic actuator, to pre-concentrate the sample, and an impedance analyser, to measure concentrated bacteria levels. The system is composed by a single micro-fluidic chamber with interdigitated electrodes and a instrumentation with custom electronics. The prototype is supported by a real-time platform connected to a remote computer, which automatically controls the system and displays impedance data used to monitor the status of bacteria accumulation on-chip. The system automates the whole concentrating operation. Performance has been studied for controlled volumes of Escherichia coli (E. coli) samples injected into the micro-fluidic chip at constant flow rate of 10 μL/min. A media conductivity correcting protocol has been developed, as the preliminary results showed distortion of the impedance analyser measurement produced by bacterial media conductivity variations through time. With the correcting protocol, the measured impedance values were related to the quantity of bacteria concentrated with a correlation of 0.988 and a coefficient of variation of 3.1%. Feasibility of E. coli on-chip automated concentration, using the miniaturized system, has been demonstrated. Furthermore, the impedance monitoring protocol had been adjusted and optimized, to handle changes in the electrical properties of the bacteria media over time.
Resumo:
Earthquakes represent a major hazard for populations around the world, causing frequent loss of life,human suffering and enormous damage to homes, other buildings and infrastructure. The Technology Resources forEarthquake Monitoring and Response (TREMOR) Team of 36 space professionals analysed this problem over thecourse of the International Space University Summer Session Program and published their recommendations in the formof a report. The TREMOR Team proposes a series of space- and ground-based systems to provide improved capabilityto manage earthquakes. The first proposed system is a prototype earthquake early-warning system that improves theexisting knowledge of earthquake precursors and addresses the potential of these phenomena. Thus, the system willat first enable the definitive assessment of whether reliable earthquake early warning is possible through precursormonitoring. Should the answer be affirmative, the system itself would then form the basis of an operational earlywarningsystem. To achieve these goals, the authors propose a multi-variable approach in which the system will combine,integrate and process precursor data from space- and ground-based seismic monitoring systems (already existing andnew proposed systems) and data from a variety of related sources (e.g. historical databases, space weather data, faultmaps). The second proposed system, the prototype earthquake simulation and response system, coordinates the maincomponents of the response phase to reduce the time delays of response operations, increase the level of precisionin the data collected, facilitate communication amongst teams, enhance rescue and aid capabilities and so forth. It isbased in part on an earthquake simulator that will provide pre-event (if early warning is proven feasible) and post-eventdamage assessment and detailed data of the affected areas to corresponding disaster management actors by means of ageographic information system (GIS) interface. This is coupled with proposed mobile satellite communication hubs toprovide links between response teams. Business- and policy-based implementation strategies for these proposals, suchas the establishment of a non-governmental organisation to develop and operate the systems, are included.
Resumo:
The aim of this project is to get used to another kind of programming. Since now, I used very complex programming languages to develop applications or even to program microcontrollers, but PicoCricket system is the evidence that we don’t need so complex development tools to get functional devices. PicoCricket system is the clear example of simple programming to make devices work the way we programmed it. There’s an easy but effective way to program small, devices just saying what we want them to do. We cannot do complex algorithms and mathematical operations but we can program them in a short time. Nowadays, the easier and faster we produce, the more we earn. So the tendency is to develop fast, cheap and easy, and PicoCricket system can do it.
Resumo:
Context.LS 5039 has been observed with several X-ray instruments so far showing quite steady emission in the long term and no signatures of accretion disk. The source also presents X-ray variability at orbital timescales in flux and photon index. The system harbors an O-type main sequence star with moderate mass-loss. At present, the link between the X-rays and the stellar wind is unclear. Aims.We study the X-ray fluxes, spectra, and absorption properties of LS 5039 at apastron and periastron passages during an epoch of enhanced stellar mass-loss, and the long term evolution of the latter in connection with the X-ray fluxes. Methods.New XMM-Newton observations were performed around periastron and apastron passages in September 2005, when the stellar wind activity was apparently higher. April 2005 Chandra observations on LS 5039 were revisited. Moreover, a compilation of H EW data obtained since 1992, from which the stellar mass-loss evolution can be approximately inferred, was carried out. Results.XMM-Newton observations show higher and harder emission around apastron than around periastron. No signatures of thermal emission or a reflection iron line indicating the presence of an accretion disk are found in the spectrum, and the hydrogen column density () is compatible with being the same in both observations and consistent with the interstellar value. 2005 Chandra observations show a hard X-ray spectrum, and possibly high fluxes, although pileup effects preclude conclusive results from being obtained. The H EW shows yearly variations of 10%, and does not seem to be correlated with X-ray fluxes obtained at similar phases, unlike what is expected in the wind accretion scenario. Conclusions.2005 XMM-Newton and Chandra observations are consistent with 2003 RXTE/PCA results, namely moderate flux and spectral variability at different orbital phases. The constancy of the seems to imply that either the X-ray emitter is located at 1012 cm from the compact object, or the density in the system is 3 to 27 times smaller than that predicted by a spherical symmetric wind model. We suggest that the multiwavelength non-thermal emission of LS 5039 is related to the observed extended radio jets and is unlikely to be produced inside the binary system.
Resumo:
The aim of this project is to get used to another kind of programming. Since now, I used very complex programming languages to develop applications or even to program microcontrollers, but PicoCricket system is the evidence that we don’t need so complex development tools to get functional devices. PicoCricket system is the clear example of simple programming to make devices work the way we programmed it. There’s an easy but effective way to programs mall devices just saying what we want them to do. We cannot do complex algorithms and mathematical operations but we can program them in a short time. Nowadays, the easier and faster we produce, the more we earn. So the tendency is to develop fast, cheap and easy, and PicoCricket system can do it.