8 resultados para Longitudinal Data Analysis and Time Series

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of compositional data analysis through log ratio trans-formations corresponds to a multinomial logit model for the shares themselves.This model is characterized by the property of Independence of Irrelevant Alter-natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactlythis invariance of the ratio that underlies the commonly used zero replacementprocedure in compositional data analysis. In this paper we investigate using thenested logit model that does not embody IIA and an associated zero replacementprocedure and compare its performance with that of the more usual approach ofusing the multinomial logit model. Our comparisons exploit a data set that com-bines voting data by electoral division with corresponding census data for eachdivision for the 2001 Federal election in Australia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intuitively, music has both predictable and unpredictable components. In this work we assess this qualitative statement in a quantitative way using common time series models fitted to state-of-the-art music descriptors. These descriptors cover different musical facets and are extracted from a large collection of real audio recordings comprising a variety of musical genres. Our findings show that music descriptor time series exhibit a certain predictability not only for short time intervals, but also for mid-term and relatively long intervals. This fact is observed independently of the descriptor, musical facet and time series model we consider. Moreover, we show that our findings are not only of theoretical relevance but can also have practical impact. To this end we demonstrate that music predictability at relatively long time intervals can be exploited in a real-world application, namely the automatic identification of cover songs (i.e. different renditions or versions of the same musical piece). Importantly, this prediction strategy yields a parameter-free approach for cover song identification that is substantially faster, allows for reduced computational storage and still maintains highly competitive accuracies when compared to state-of-the-art systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compositional time series is obtained when a compositional data vector is observed atdifferent points in time. Inherently, then, a compositional time series is a multivariatetime series with important constraints on the variables observed at any instance in time.Although this type of data frequently occurs in situations of real practical interest, atrawl through the statistical literature reveals that research in the field is very much in itsinfancy and that many theoretical and empirical issues still remain to be addressed. Anyappropriate statistical methodology for the analysis of compositional time series musttake into account the constraints which are not allowed for by the usual statisticaltechniques available for analysing multivariate time series. One general approach toanalyzing compositional time series consists in the application of an initial transform tobreak the positive and unit sum constraints, followed by the analysis of the transformedtime series using multivariate ARIMA models. In this paper we discuss the use of theadditive log-ratio, centred log-ratio and isometric log-ratio transforms. We also presentresults from an empirical study designed to explore how the selection of the initialtransform affects subsequent multivariate ARIMA modelling as well as the quality ofthe forecasts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computingand graphics. The environment in which many classical and modern statistical techniques havebeen implemented, but many are supplied as packages. There are 8 standard packages and many moreare available through the cran family of Internet sites http://cran.r-project.org .We started to develop a library of functions in R to support the analysis of mixtures and our goal isa MixeR package for compositional data analysis that provides support foroperations on compositions: perturbation and power multiplication, subcomposition with or withoutresiduals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances,compositional Kullback-Leibler divergence etc.graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features:barycenter, geometric mean of the data set, the percentiles lines, marking and coloring ofsubsets of the data set, theirs geometric means, notation of individual data in the set . . .dealing with zeros and missing values in compositional data sets with R procedures for simpleand multiplicative replacement strategy,the time series analysis of compositional data.We’ll present the current status of MixeR development and illustrate its use on selected data sets

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for the measurement of changes in health inequality and income-related health inequality over time in a population.For pure health inequality (as measured by the Gini coefficient) andincome-related health inequality (as measured by the concentration index),we show how measures derived from longitudinal data can be related tocross section Gini and concentration indices that have been typicallyreported in the literature to date, along with measures of health mobilityinspired by the literature on income mobility. We also show how thesemeasures of mobility can be usefully decomposed into the contributions ofdifferent covariates. We apply these methods to investigate the degree ofincome-related mobility in the GHQ measure of psychological well-being inthe first nine waves of the British Household Panel Survey (BHPS). Thisreveals that dynamics increase the absolute value of the concentrationindex of GHQ on income by 10%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents new evidence concerning the uneven processes of industrialization innineteenth century Spain and Italy based on a disaggregate analysis of the productivesectors from which the behaviour of the aggregate indices is comprised. The use of multivariate time-series analysis techniques can aid our understanding and characterization of these two processes of industrialization. The identification of those sectors with key rolesin leading industrial growth provides new evidence concerning the factors that governed thebehaviour of the aggregates in the two economies. In addition, the analysis of the existenceof interindustry linkages reveals the scale of the industrialization process, and wheresignificant differences exist, accounts for many of the divergences recorded in the historiography for the period 1850-1913.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents new evidence concerning the uneven processes of industrialization innineteenth century Spain and Italy based on a disaggregate analysis of the productivesectors from which the behaviour of the aggregate indices is comprised. The use of multivariate time-series analysis techniques can aid our understanding and characterization of these two processes of industrialization. The identification of those sectors with key rolesin leading industrial growth provides new evidence concerning the factors that governed thebehaviour of the aggregates in the two economies. In addition, the analysis of the existenceof interindustry linkages reveals the scale of the industrialization process, and wheresignificant differences exist, accounts for many of the divergences recorded in the historiography for the period 1850-1913.