76 resultados para Logarithmic function
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper is to examine the proper use of dimensions and curve fitting practices elaborating on Georgescu-Roegen’s economic methodology in relation to the three main concerns of his epistemological orientation. Section 2 introduces two critical issues in relation to dimensions and curve fitting practices in economics in view of Georgescu-Roegen’s economic methodology. Section 3 deals with the logarithmic function (ln z) and shows that z must be a dimensionless pure number, otherwise it is nonsensical. Several unfortunate examples of this analytical error are presented including macroeconomic data analysis conducted by a representative figure in this field. Section 4 deals with the standard Cobb-Douglas function. It is shown that the operational meaning cannot be obtained for capital or labor within the Cobb-Douglas function. Section 4 also deals with economists "curve fitting fetishism". Section 5 concludes thispaper with several epistemological issues in relation to dimensions and curve fitting practices in economics.
Resumo:
We investigate on-line prediction of individual sequences. Given a class of predictors, the goal is to predict as well as the best predictor in the class, where the loss is measured by the self information (logarithmic) loss function. The excess loss (regret) is closely related to the redundancy of the associated lossless universal code. Using Shtarkov's theorem and tools from empirical process theory, we prove a general upper bound on the best possible (minimax) regret. The bound depends on certain metric properties of the class of predictors. We apply the bound to both parametric and nonparametric classes ofpredictors. Finally, we point out a suboptimal behavior of the popular Bayesian weighted average algorithm.
Resumo:
Markowitz portfolio theory (1952) has induced research into the efficiency of portfolio management. This paper studies existing nonparametric efficiency measurement approaches for single period portfolio selection from a theoretical perspective and generalises currently used efficiency measures into the full mean-variance space. Therefore, we introduce the efficiency improvement possibility function (a variation on the shortage function), study its axiomatic properties in the context of Markowitz efficient frontier, and establish a link to the indirect mean-variance utility function. This framework allows distinguishing between portfolio efficiency and allocative efficiency. Furthermore, it permits retrieving information about the revealed risk aversion of investors. The efficiency improvement possibility function thus provides a more general framework for gauging the efficiency of portfolio management using nonparametric frontier envelopment methods based on quadratic optimisation.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper provides empirical evidence that continuous time models with one factor of volatility, in some conditions, are able to fit the main characteristics of financial data. It also reports the importance of the feedback factor in capturing the strong volatility clustering of data, caused by a possible change in the pattern of volatility in the last part of the sample. We use the Efficient Method of Moments (EMM) by Gallant and Tauchen (1996) to estimate logarithmic models with one and two stochastic volatility factors (with and without feedback) and to select among them.
Resumo:
We study quadratic perturbations of the integrable system (1+x)dH; where H =(x²+y²)=2: We prove that the first three Melnikov functions associated to the perturbed system give rise at most to three limit cycles.
Resumo:
Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.
Resumo:
A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."