112 resultados para Linear range
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
Sediment composition is mainly controlled by the nature of the source rock(s), and chemical (weathering) and physical processes (mechanical crushing, abrasion, hydrodynamic sorting) during alteration and transport. Although the factors controlling these processes are conceptually well understood, detailed quantification of compositional changes induced by a single process are rare, as are examples where the effects of several processes can be distinguished. The present study was designed to characterize the role of mechanical crushing and sorting in the absence of chemical weathering. Twenty sediment samples were taken from Alpine glaciers that erode almost pure granitoid lithologies. For each sample, 11 grain-size fractions from granules to clay (ø grades &-1 to &9) were separated, and each fraction was analysed for its chemical composition.The presence of clear steps in the box-plots of all parts (in adequate ilr and clr scales) against ø is assumed to be explained by typical crystal size ranges for the relevant mineral phases. These scatter plots and the biplot suggest a splitting of the full grain size range into three groups: coarser than ø=4 (comparatively rich in SiO2, Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and feldspar), finer than ø=8 (comparatively rich in TiO2, MnO, MgO, Fe2O3, mostly related to “mafic” sheet silicates like biotite and chlorite), and intermediate grains sizes (4≤ø &8; comparatively rich in P2O5 and CaO, related to apatite, some feldspar).To further test the absence of chemical weathering, the observed compositions were regressed against three explanatory variables: a trend on grain size in ø scale, a step function for ø≥4, and another for ø≥8. The original hypothesis was that the trend could be identified with weathering effects, whereas each step function would highlight those minerals with biggest characteristic size at its lower end. Results suggest that this assumption is reasonable for the step function, but that besides weathering some other factors (different mechanical behavior of minerals) have also an important contribution to the trend.Key words: sediment, geochemistry, grain size, regression, step function
Resumo:
Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.
Resumo:
We explain the empirical linear relations between the triplet scattering length, or the asymptotic normalization constant, and the deuteron matter radius using the effective range expansion in a manner similar to a recent paper by Bhaduri et al. We emphasize the corrections due to the finite force range and to shape dependence. The discrepancy between the experimental values and the empirical line shows the need for a larger value of the wound extension, a parameter which we introduce here. Short-distance nonlocality of the n-p interaction is a plausible explanation for the discrepancy.
Resumo:
Ground-state instability to bond alternation in long linear chains is considered from the point of view of valence-bond (VB) theory. This instability is viewed as the consequence of a long-range order (LRO) which is expected if the ground state is reasonably described in terms of the Kekulé states (with nearest-neighbor singlet pairing). It is argued that the bond alternation and associated LRO predicted by this simple, VB picture is retained for certain linear Heisenberg models; many-body VB calculations on spin s=1 / 2 and s=1 chains are carried out in a test of this argument.
Resumo:
This article describes a method for determining the polydispersity index Ip2=Mz/Mw of the molecular weight distribution (MWD) of linear polymeric materials from linear viscoelastic data. The method uses the Mellin transform of the relaxation modulus of a simple molecular rheological model. One of the main features of this technique is that it enables interesting MWD information to be obtained directly from dynamic shear experiments. It is not necessary to achieve the relaxation spectrum, so the ill-posed problem is avoided. Furthermore, a determinate shape of the continuous MWD does not have to be assumed in order to obtain the polydispersity index. The technique has been developed to deal with entangled linear polymers, whatever the form of the MWD is. The rheological information required to obtain the polydispersity index is the storage G′(ω) and loss G″(ω) moduli, extending from the terminal zone to the plateau region. The method provides a good agreement between the proposed theoretical approach and the experimental polydispersity indices of several linear polymers for a wide range of average molecular weights and polydispersity indices. It is also applicable to binary blends.
Resumo:
This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates.
Resumo:
The present work describes the development of a fast and robust analytical method for the determination of 53 antibiotic residues, covering various chemical groups and some of their metabolites, in environmental matrices that are considered important sources of antibiotic pollution, namely hospital and urban wastewaters, as well as in river waters. The method is based on automated off-line solid phase extraction (SPE) followed by ultra-high-performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry (UHPLC–QqLIT). For unequivocal identification and confirmation, and in order to fulfill EU guidelines, two selected reaction monitoring (SRM) transitions per compound are monitored (the most intense one is used for quantification and the second one for confirmation). Quantification of target antibiotics is performed by the internal standard approach, using one isotopically labeled compound for each chemical group, in order to correct matrix effects. The main advantages of the method are automation and speed-up of sample preparation, by the reduction of extraction volumes for all matrices, the fast separation of a wide spectrum of antibiotics by using ultra-high-performance liquid chromatography, its sensitivity (limits of detection in the low ng/L range) and selectivity (due to the use of tandem mass spectrometry) The inclusion of β-lactam antibiotics (penicillins and cephalosporins), which are compounds difficult to analyze in multi-residue methods due to their instability in water matrices, and some antibiotics metabolites are other important benefits of the method developed. As part of the validation procedure, the method developed was applied to the analysis of antibiotics residues in hospital, urban influent and effluent wastewaters as well as in river water samples
Resumo:
We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue measure.
Resumo:
We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We extend Floquet theory for reducing nonlinear periodic difference systems to autonomous ones (actually linear) by using normal form theory.
Resumo:
We present experimental and theoretical analyses of data requirements for haplotype inference algorithms. Our experiments include a broad range of problem sizes under two standard models of tree distribution and were designed to yield statistically robust results despite the size of the sample space. Our results validate Gusfield's conjecture that a population size of n log n is required to give (with high probability) sufficient information to deduce the n haplotypes and their complete evolutionary history. The experimental results inspired our experimental finding with theoretical bounds on the population size. We also analyze the population size required to deduce some fixed fraction of the evolutionary history of a set of n haplotypes and establish linear bounds on the required sample size. These linear bounds are also shown theoretically.
Resumo:
Based on Lucas functions, an improved version of the Diffie-Hellman distribution key scheme and to the ElGamal public key cryptosystem scheme are proposed, together with an implementation and computational cost. The security relies on the difficulty of factoring an RSA integer and on the difficulty of computing the discrete logarithm.
Resumo:
We extend the linear reforms introduced by Pf¨ahler (1984) to the case of dual taxes. We study the relative effect that linear dual tax cuts have on the inequality of income distribution -a symmetrical study can be made for dual linear tax hikes-. We also introduce measures of the degree of progressivity for dual taxes and show that they can be connected to the Lorenz dominance criterion. Additionally, we study the tax liability elasticity of each of the reforms proposed. Finally, by means of a microsimulation model and a considerably large data set of taxpayers drawn from 2004 Spanish Income Tax Return population, 1) we compare different yield-equivalent tax cuts applied to the Spanish dual income tax and 2) we investigate how much income redistribution the dual tax reform (Act ‘35/2006’) introduced with respect to the previous tax.