63 resultados para Light gauge steel frames
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The purpose of the study was to evaluate the shear bond strength of stainless steel orthodontic brackets directly bonded to extracted human premolar teeth. Fifty teeth were randomly divided into ¿ve groups: (1) System One (chemically cured composite resin), (2) Light Bond (light-cured composite resin), (3) Vivaglass Cem (self-curing glass ionomer cement), (4) Fuji Ortho LC (light-cured glass ionomer cement) used after 37% orthophosphoric acid¿etching of enamel (5) Fuji Ortho LC without orthophosphoric acid¿etching. The brackets were placed on the buccal and lingual surfaces of each tooth, and the specimens were stored in distilled water (24 hours) at 378C and thermocycled. Teeth were mounted on acrylic block frames, and brackets were debonded using an Instron machine. Shear bond strength values at fracture (Nw)were recorded. ANOVA and Student-Newman-Keuls multiple comparison tests were performed (P , .05). Bonding failure site was recorded by stereomicroscope and analyzed by Chi-square test, selected specimens of each group were observed by scanning electron microscope. System One attained the highest bond strength. Light Bond and Fuji Ortho LC, when using an acid-etching technique, obtained bond strengths that were within the range of estimated bond strength values for successful clinical bonding. Fuji Ortho LC and Vivaglass Cem left an almost clean enamel surface after debracketing.
Resumo:
Decision-makers are sometimes influenced by the way in which choice situations are presented to them or "framed" This can be seen as an important challenge to the social sciences, since strong and pervasive framing effects would make it difficult to study human behavior in a synthetic or theoretic manner. We present results from experiments with dilemma games designed to shed light on the effects of several frame variations. We study, among others, the particular public bad frame used by Andreoni (1995) and two more naturalistic frames involving stories. Our results show that none of the frame manipulations have a significant effect on average behavior, but we do find some effects on extreme behavior. We also find that incentives do matter where frames do not matter.
Resumo:
Increasing greenhouse light transmission has a positive effect not only in Northern latitudes but in Mediterranean countries as well. A greenhouse, H2, with a tetrafluoroethylene copolymer 60 microns film, (Asahi Glass company, Aflex) characterised by its high light transmission and durability was compared to another greenhouse with a co-extruded film considered as a control, H1. Tomato crop response to the increase in light during winter and summer with high temperature and light was evaluated. Light transmission in H2 remained very high in spite of the observed dust accumulation and the low angle of incidence of the winter solar radiation. Transmissivity was clearly higher for H2 (81 to 83 % throughout the season) than in the control (around 63 %). The rest of the climatic parameters were similar in both greenhouses, either in the winter or in the summer evaluations. In spite of the high solar radiation in H2, the summer temperature could be maintained at the desired levels by using evaporative cooling. Accumulated tomato yield and quality was better in the H2 greenhouse (15 % more for the winter crop and 27% more for the summer crop). Fruit size was bigger in the winter crop. As an overall conclusion, the use of high light transmissive films in Mediterranean areas is very convenient for many vegetable crops. This is valid not only in winter but in summer, provided the greenhouse has good ventilation or evaporative cooling to overcome the increase in sensible heat caused by this increase in light..
Resumo:
The study was performed in the installations of OCAS, a Steel Research Centre of ArcelorMittal. Taking M32 steel (3.25%Si+0.9%Al) as the basis chemical composition and three different thicknesses (0.35, 0.5 and 0.65mm), different annealing conditions (temperature and time) have been applied in the laboratory simulator at St. Chély, France. The aim was to link annealing parameters, grain size and energy loss. It was determined the optimum annealing parameters to reach the lowest power losses for three different grades of non-oriented fully processed electrical steel. In addition, M250-50 samples having different magnetic behaviour (high and low losses) but the same grain size and texture, have been analyzed in terms of TEM observations of their precipitates, in the University of Marseille. The results reveal that a high amount of medium and big precipitates (&10 nm) worsen the magnetic properties of the material. The small precipitates (&10nm) do not have a strong influence on the magnetic properties. The presence of precipitates can have a great influence on the power losses and further work is clearly necessary.
Resumo:
The influence of chemistry and soaking temperature (maximal temperature of the continuous annealing) on the final properties of non-oriented electrical steels has been studied. With this objective two different studies have been performed. First the Mn, Ni and Cr content of a low loss electrical steel composition has been modified. An intermediate content and a high content of each element has been added in order to study the influence of this components on the magnetic looses, grain size and texture. Secondly the influence of the soaking temperature on magnetic properties, grain size and oxidation in four grades of non-oriented electrical steels (Steel A, B, C and D) was studied.
Resumo:
Continuity of set-valued maps is hereby revisited: after recalling some basic concepts of variational analysis and a short description of the State-of-the-Art, we obtain as by-product two Sard type results concerning local minima of scalar and vector valued functions. Our main result though, is inscribed in the framework of tame geometry, stating that a closed-valued semialgebraic set-valued map is almost everywhere continuous (in both topological and measure-theoretic sense). The result –depending on stratification techniques– holds true in a more general setting of o-minimal (or tame) set-valued maps. Some applications are briefly discussed at the end.
Resumo:
This paper describes the improvements achieved in our mosaicking system to assist unmanned underwater vehicle navigation. A major advance has been attained in the processing of images of the ocean floor when light absorption effects are evident. Due to the absorption of natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination for processing underwater images. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion. In this paper a technique to correct non-uniform lighting is proposed. The acquired frames are compensated through a point-by-point division of the image by an estimation of the illumination field. Then, the gray-levels of the obtained image remapped to enhance image contrast. Experiments with real images are presented
Resumo:
Catadioptric sensors are combinations of mirrors and lenses made in order to obtain a wide field of view. In this paper we propose a new sensor that has omnidirectional viewing ability and it also provides depth information about the nearby surrounding. The sensor is based on a conventional camera coupled with a laser emitter and two hyperbolic mirrors. Mathematical formulation and precise specifications of the intrinsic and extrinsic parameters of the sensor are discussed. Our approach overcomes limitations of the existing omni-directional sensors and eventually leads to reduced costs of production
Resumo:
Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of non-textured objects or objects for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance
Resumo:
This paper focuses on the problem of realizing a plane-to-plane virtual link between a camera attached to the end-effector of a robot and a planar object. In order to do the system independent to the object surface appearance, a structured light emitter is linked to the camera so that 4 laser pointers are projected onto the object. In a previous paper we showed that such a system has good performance and nice characteristics like partial decoupling near the desired state and robustness against misalignment of the emitter and the camera (J. Pages et al., 2004). However, no analytical results concerning the global asymptotic stability of the system were obtained due to the high complexity of the visual features utilized. In this work we present a better set of visual features which improves the properties of the features in (J. Pages et al., 2004) and for which it is possible to prove the global asymptotic stability
Resumo:
In this paper we face the problem of positioning a camera attached to the end-effector of a robotic manipulator so that it gets parallel to a planar object. Such problem has been treated for a long time in visual servoing. Our approach is based on linking to the camera several laser pointers so that its configuration is aimed to produce a suitable set of visual features. The aim of using structured light is not only for easing the image processing and to allow low-textured objects to be treated, but also for producing a control scheme with nice properties like decoupling, stability, well conditioning and good camera trajectory
Resumo:
Coded structured light is an optical technique based on active stereovision that obtains the shape of objects. One shot techniques are based on projecting a unique light pattern with an LCD projector so that grabbing an image with a camera, a large number of correspondences can be obtained. Then, a 3D reconstruction of the illuminated object can be recovered by means of triangulation. The most used strategy to encode one-shot patterns is based on De Bruijn sequences. In This work a new way to design patterns using this type of sequences is presented. The new coding strategy minimises the number of required colours and maximises both the resolution and the accuracy
Resumo:
Obtaining automatic 3D profile of objects is one of the most important issues in computer vision. With this information, a large number of applications become feasible: from visual inspection of industrial parts to 3D reconstruction of the environment for mobile robots. In order to achieve 3D data, range finders can be used. Coded structured light approach is one of the most widely used techniques to retrieve 3D information of an unknown surface. An overview of the existing techniques as well as a new classification of patterns for structured light sensors is presented. This kind of systems belong to the group of active triangulation method, which are based on projecting a light pattern and imaging the illuminated scene from one or more points of view. Since the patterns are coded, correspondences between points of the image(s) and points of the projected pattern can be easily found. Once correspondences are found, a classical triangulation strategy between camera(s) and projector device leads to the reconstruction of the surface. Advantages and constraints of the different patterns are discussed
Resumo:
This paper presents the implementation details of a coded structured light system for rapid shape acquisition of unknown surfaces. Such techniques are based on the projection of patterns onto a measuring surface and grabbing images of every projection with a camera. Analyzing the pattern deformations that appear in the images, 3D information of the surface can be calculated. The implemented technique projects a unique pattern so that it can be used to measure moving surfaces. The structure of the pattern is a grid where the color of the slits are selected using a De Bruijn sequence. Moreover, since both axis of the pattern are coded, the cross points of the grid have two codewords (which permits to reconstruct them very precisely), while pixels belonging to horizontal and vertical slits have also a codeword. Different sets of colors are used for horizontal and vertical slits, so the resulting pattern is invariant to rotation. Therefore, the alignment constraint between camera and projector considered by a lot of authors is not necessary