39 resultados para Libelium gases board acquisizione dati gas

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extending the traditional input-output model to account for the environmental impacts of production processes reveals the channels by which environmental burdens are transmitted throughout the economy. In particular, the environmental input-output approach is a useful technique for quantifying the changes in the levels of greenhouse emissions caused by changes in the final demand for production activities. The inputoutput model can also be used to determine the changes in the relative composition of greenhouse gas emissions due to exogenous inflows. In this paper we describe a method for evaluating how the exogenous changes in sectorial demand, such as changes in private consumption, public consumption, investment and exports, affect the relative contribution of the six major greenhouse gases regulated by the Kyoto Protocol to total greenhouse emissions. The empirical application is for Spain, and the economic and environmental data are for the year 2000. Our results show that there are significant differences in the effects of different sectors on the composition of greenhouse emissions. Therefore, the final impact on the relative contribution of pollutants will basically depend on the activity that receives the exogenous shock in final demand, because there are considerable differences in the way, and the extent to which, individual activities affect the relative composition of greenhouse gas emissions. Keywords: Greenhouse emissions, composition of emissions, sectorial demand, exogenous shock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of compositional changes in fumarolic gases of active and quiescent volcanoes is one of the mostimportant targets in monitoring programs. From a general point of view, many systematic (often cyclic) and randomprocesses control the chemistry of gas discharges, making difficult to produce a convincing mathematical-statisticalmodelling.Changes in the chemical composition of volcanic gases sampled at Vulcano Island (Aeolian Arc, Sicily, Italy) fromeight different fumaroles located in the northern sector of the summit crater (La Fossa) have been analysed byconsidering their dependence from time in the period 2000-2007. Each intermediate chemical composition has beenconsidered as potentially derived from the contribution of the two temporal extremes represented by the 2000 and 2007samples, respectively, by using inverse modelling methodologies for compositional data. Data pertaining to fumarolesF5 and F27, located on the rim and in the inner part of La Fossa crater, respectively, have been used to achieve theproposed aim. The statistical approach has allowed us to highlight the presence of random and not random fluctuations,features useful to understand how the volcanic system works, opening new perspectives in sampling strategies and inthe evaluation of the natural risk related to a quiescent volcano

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earlobe Arterialized Blood Collector® is a minimally invasive system able to perform arterialized capillary blood gas analysis from the earlobe (EL). A prospective validation study was performed in 55 critical ill patients. Sampling failure rate was high (53.6%). Risk factors were age > 65 years, diabetes, vasoactive drug therapy and noradrenaline (NA) doses above 0.22 μg / kg / min. Multivariate analysis showed age > 65 years was the only factor independently associated with failure. Concordance analysis with arterial blood gases and Bland-Altman agreement evaluation were insufficient for validating the new system for all gasometrical variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the longvelocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f (c)~exp (−cⁿ), with n ≈1.2, regarding less the fragmentation mechanisms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P) = I0¿exp(¿P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ammonia gas detection by pure and catalytically modified WO3 based gas sensor was analysed. The sensor response of pure WO3 to NH3 was not only rather low but also presented an abnormal behaviour, probably due to the unselective oxidation of ammonia to NOx. Copper and vanadium were introduced in different concentrations and the resulting material was annealed at different temperatures in order to improve the sensing properties for NH3 detection. The introduction of copper and vanadium as catalytic additives improved the response to NH3 and also eliminated the abnormal behaviour. Possible mechanisms of NH3 reaction over these materials are discussed. Sensor responses to other gases like NO2 or CO and the interference of humidity on ammonia detection were also analysed so as to choose the best sensing element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new drift compensation method based on Common Principal Component Analysis (CPCA) is proposed. The drift variance in data is found as the principal components computed by CPCA. This method finds components that are common for all gasses in feature space. The method is compared in classification task with respect to the other approaches published where the drift direction is estimated through a Principal Component Analysis (PCA) of a reference gas. The proposed new method ¿ employing no specific reference gas, but information from all gases ¿has shown the same performance as the traditional approach with the best-fitted reference gas. Results are shown with data lasting 7-months including three gases at different concentrations for an array of 17 polymeric sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantum-kinetic energy of a finite number of trapped fermionic atoms provides a restoring force for shear motion due to a distortion of the momentum distribution. In analogy to the twist mode of nuclear physics, it is proposed that counter rotating the upper and lower hemisphere of a spherical atomic cloud yields a finite-frequency mode closely related to transverse zero sound waves in bulk Fermi liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, such as the variational correlated theory, the Bogoliubov model, and the uniform limit approximation, valid in the weak-interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. Jastrow-type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-sphere potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of x~0.001. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of x. The occurrence of a maximum in the radial distribution function, in the momentum distribution, and in the excitation spectrum is a natural effect of the correlations when x increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach is very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study strongly correlated ground and excited states of rotating quasi-2D Fermi gases constituted of a small number of dipole-dipole interacting particles with dipole moments polarized perpendicular to the plane of motion. As the number of atoms grows, the system enters an intermediate regime, where ground states are subject to a competition between distinct bulk-edge configurations. This effect obscures their description in terms of composite fermions and leads to the appearance of novel quasihole ground states. In the presence of dipolar interactions, the principal Laughlin state at filling upsilon=1/3 exhibits a substantial energy gap for neutral (total angular momentum conserving) excitations and is well-described as an incompressible Fermi liquid. Instead, at lower fillings, the ground state structure favors crystalline order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the "twist" mode (rotation of the upper against the lower hemisphere) of a dilute atomic Fermi gas in a spherical trap. The normal and superfluid phases are considered. The linear response to this external perturbation is calculated within the microscopic Hartree-Fock-Bogoliubov approach. In the normal phase the excitation spectrum is concentrated in a rather narrow peak very close to the trapping frequency. In the superfluid phase the strength starts to be damped and fragmented and the collectivity of the mode is progressively lost when the temperature decreases. In the weak-pairing regime some reminiscence of the collective motion still exists, whereas in the strong-pairing regime the twist mode is completely washed out. The disappearance of the twist mode in the strong-pairing regime with decreasing temperature is interpreted in the framework of the two-fluid model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P) = I0¿exp(¿P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly transparent and stoichiometric boron nitride (BN) films were deposited on both electrodes (anode and cathode) of a radio-frequency parallel-plate plasma reactor by the glow discharge decomposition of two gas mixtures: B2H6-H2-NH3 and B2H6-N2. The chemical, optical, and structural properties of the films, as well as their stability under long exposition to humid atmosphere, were analyzed by x-ray photoelectron, infrared, and Raman spectroscopies; scanning and transmission electron microscopies; and optical transmittance spectrophotometry. It was found that the BN films grown on the anode using the B2H6-H2-NH3 mixture were smooth, dense, adhered well to substrates, and had a textured hexagonal structure with the basal planes perpendicular to the film surface. These films were chemically stable to moisture, even after an exposition period of two years. In contrast, the films grown on the anode from the B2H6-N2 mixture showed tensile stress failure and were very unstable in the presence of moisture. However, the films grown on the cathode from B2H6-H2-NH3 gases suffered from compressive stress failure on exposure to air; whereas with B2H6-N2 gases, adherent and stable cathodic BN films were obtained with the same crystallographic texture as anodic films prepared from the B2H6-H2-NH3 mixture. These results are discussed in terms of the origin of film stress, the effects of ion bombardment on the growing films, and the surface chemical effects of hydrogen atoms present in the gas discharge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Up until now, analyses of the international distribution of pollutant emissions have not paid sufficient attention to the implications that, in terms of social welfare, the combined evolution of the global world average entails. In this context, this paper proposes the use of environmental welfare indices, taken and adapted from the literature on social welfare and inequality, in order to make a comprehensive examination of the international equity factor and the mean factor in this field. The proposed methodology is implemented empirically in order to explore the evolution in distributive-based environmental welfare on a global level for the three main pollutants with greenhouse gas effects: CO2, CH4 and NO, both globally and for selected years during the period of 1990- 2005. The main results found are as follows: firstly, typically, the environmental welfare associated with the overall greenhouse gases decreased significantly over the period, due primarily to the role of CO2; secondly, in contrast, the global welfare associated with CH4 and NO improved; and thirdly, typically, the evolutions can be attributed to a greater extent to the mean component than to the distributive component, although there are exceptions. These results would seem to be relevant in policy terms. JEL codes: D39; Q43; Q56. Keywords: environmental welfare: greenhouse gases; environmental equity.