38 resultados para Learning algorithms

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estudio e implantación de algoritmos de recomendación, búsqueda, ranking y aprendizaje.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En aquest projecte es presenta l’aplicació per a dispositius mòbils Doppelganger. La seva funció és, a partir d’una fotografia, detectar la cara i mostrar la persona famosa de la nostra base de dades que més s’assembla a la persona en la fotografia. Per la implementació s’han utilitzat algoritmes de visió per computador i d’aprenentatge automàtic com per exemple el PCA i el K-Nearest Neighbor, tot utilitzant llibreries gratuïtes com són les OpenCV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider an agent who has to repeatedly make choices in an uncertainand changing environment, who has full information of the past, who discountsfuture payoffs, but who has no prior. We provide a learning algorithm thatperforms almost as well as the best of a given finite number of experts orbenchmark strategies and does so at any point in time, provided the agentis sufficiently patient. The key is to find the appropriate degree of forgettingdistant past. Standard learning algorithms that treat recent and distant pastequally do not have the sequential epsilon optimality property.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is common to find in experimental data persistent oscillations in the aggregate outcomes and high levels of heterogeneity in individual behavior. Furthermore, it is not unusual to find significant deviations from aggregate Nash equilibrium predictions. In this paper, we employ an evolutionary model with boundedly rational agents to explain these findings. We use data from common property resource experiments (Casari and Plott, 2003). Instead of positing individual-specific utility functions, we model decision makers as selfish and identical. Agent interaction is simulated using an individual learning genetic algorithm, where agents have constraints in their working memory, a limited ability to maximize, and experiment with new strategies. We show that the model replicates most of the patterns that can be found in common property resource experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the "state of the art" about distributed systems and applications and it's focused on teaching about these systems. It presents different platforms where to run distributed applications and describes some development toolkits whose can be used to develop prototypes, practices and distributed applications. It also presents some existing distributed algorithms useful for class practices, and some tools to help managing distributed environments. Finally, the paper presents some teaching experiences with different approaches on how to teach about distributed systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project a research both in finding predictors via clustering techniques and in reviewing the Data Mining free software is achieved. The research is based in a case of study, from where additionally to the KDD free software used by the scientific community; a new free tool for pre-processing the data is presented. The predictors are intended for the e-learning domain as the data from where these predictors have to be inferred are student qualifications from different e-learning environments. Through our case of study not only clustering algorithms are tested but also additional goals are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work focuses on the prediction of the two main nitrogenous variables that describe the water quality at the effluent of a Wastewater Treatment Plant. We have developed two kind of Neural Networks architectures based on considering only one output or, in the other hand, the usual five effluent variables that define the water quality: suspended solids, biochemical organic matter, chemical organic matter, total nitrogen and total Kjedhal nitrogen. Two learning techniques based on a classical adaptative gradient and a Kalman filter have been implemented. In order to try to improve generalization and performance we have selected variables by means genetic algorithms and fuzzy systems. The training, testing and validation sets show that the final networks are able to learn enough well the simulated available data specially for the total nitrogen

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The teaching of higher level mathematics for technical students in a virtual learningenvironment poses some difficulties, but also opportunities, now specific to that virtuality.On the other hand, resources and ways to do now manly available in VLEs might soon extend to all kinds of environments.In this short presentation we will discuss anexperience carried at Universitat Oberta deCatalunya (UOC) involving (an on line university), first, the translation of LaTeX written existent materials to a web based format(specifically, a combination of XHTML andMathML), and then the integration of a symbolic calculator software (WIRIS) running as a Java applet embedded in the materials, intending to achieve an evolution from memorising concepts and repetitive algorithms to understanding and experiment concepts and the use of those algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durant els darrers anys, s’han publicat un gran nombre de materials multimèdia destinats a l’aprenentatge de llengües, la major part dels quals son CD-ROM dissenyats com a cursos per l’autoaprenentatge. Amb aquests materials, els alumnes poden treballar independentment sense l’assessorament d’un professor, i per aquest motiu s’ha afirmat que promouen i faciliten l’aprenentatge autònom. Aquesta relació, però, no es certa, com Phil Benson i Peter Voller 1997:10) han manifestat encertadament:(…) Such claims are often dubious, however, because of the limited range of options and roles offered to the learner. Nevertheless, technologies of education in the broadest sense can be considered to be either more or less supportive of autonomy. The question is what kind of criteria do we apply in evaluating them? En aquest article presentem una investigació conjunta on es defineixen els criteris que poden ser utilitzats per avaluar materials multimèdia en relació a la seva facilitat per permetre l’aprenentatge autònom. Aquests criteris son la base d’un qüestionari que s’ha emprat per avaluar una selecció de CD-ROM destinats a l’autoaprenentatge de llengües. La estructura d’aquest article és la següent: - Una introducció de l’estudi - Els criteris que s’han utilitzar per la creació del qüestionari - Els resultats generals de l’avaluació - Les conclusions que s’han extret i la seva importància pel disseny instructiu multimèdia