6 resultados para LPL

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results: Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNF¿) values showed overexpression (198%). Conclusion: Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the variations caused by stress in lipoprotein lipase (LPL) activity, LPL-mRNA, and local blood flow in LPL-rich tissues in the rat. Stress was produced by body immobilization (Immo): the rat's limbs were taped to metal mounts, and its head was placed in a plastic tube. Chronic stress (2 h daily of Immo) decreased total LPL activity in mesenteric and epididymal white adipose tissue (WAT) and was accompanied by a weight reduction of these tissues. In limb muscle, heart, and adrenals, total LPL activity and mRNA levels increased, and, in plasma, LPL activity and mass also increased. Acute stress (30-min Immo) caused a decrease in total LPL activity only in retroperitoneal WAT and an increase in preheparin plasma active LPL, but the overall weight of this tissue did not vary significantly. We propose an early release of the enzyme from this tissue into the bloodstream by some unknown extracellular pathways or other local mechanisms. These changes in this key energy-regulating enzyme are probably induced by catecholamines. They modify the flow of energy substrates between tissues, switching the WAT from importer to exporter of free fatty acids and favoring the uptake by muscle of circulating triacylglycerides for energy supply. Moreover, we found that acute stress almost doubled blood flow in all WAT studied, favoring the export of free fatty acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aim: Lipoprotein lipase (LPL) is the main enzyme responsible for the distribution of circulating triacylglycerides in tissues. Its regulation via release from active sites in the vascular endothelium is poorly understood. In a previous study we reported that in response to acute immobilization (IMMO), LPL activity rapidly increases in plasma and decreases in white adipose tissue (WAT) in rats. In other stress situations IMMO triggers a generalized increase in nitric oxide (NO) production. Methods/Results: Here we demonstrate that in rats: 1) in vivo acute IMMO rapidly increases NO concentrations in plasma 2) during acute IMMO the WAT probably produces NO via the endothelial isoform of nitric oxide synthase (eNOS) from vessels, and 3) epididymal WAT perfused in situ with an NO donor rapidly releases LPL from the endothelium. Conclusion: We propose the following chain of events: stress stimulus / rapid increase of NO production in WAT (by eNOS) / release of LPL from the endothelium in WAT vessels. This chain of events could be a new mechanism that promotes the rapid decrease of WAT LPL activity in response to a physiological stimulus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Lipoprotein lipase (LPL) is anchored at the vascular endothelium through interaction with heparan sulfate. It is not known how this enzyme is turned over but it has been suggested that it is slowly released into blood and then taken up and degraded in the liver. Heparin releases the enzyme into the circulating blood. Several lines of evidence indicate that this leads to accelerated flux of LPL to the liver and a temporary depletion of the enzyme in peripheral tissues. RESULTS: Rat livers were found to contain substantial amounts of LPL, most of which was catalytically inactive. After injection of heparin, LPL mass in liver increased for at least an hour. LPL activity also increased, but not in proportion to mass, indicating that the lipase soon lost its activity after being bound/taken up in the liver. To further study the uptake, bovine LPL was labeled with 125I and injected. Already two min after injection about 33 % of the injected lipase was in the liver where it initially located along sinusoids. With time the immunostaining shifted to the hepatocytes, became granular and then faded, indicating internalization and degradation. When heparin was injected before the lipase, the initial immunostaining along sinusoids was weaker, whereas staining over Kupffer cells was enhanced. When the lipase was converted to inactive before injection, the fraction taken up in the liver increased and the lipase located mainly to the Kupffer cells. CONCLUSIONS: This study shows that there are heparin-insensitive binding sites for LPL on both hepatocytes and Kupffer cells. The latter may be the same sites as those that mediate uptake of inactive LPL. The results support the hypothesis that turnover of endothelial LPL occurs in part by transport to and degradation in the liver, and that this transport is accelerated after injection of heparin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Lipoproteína lipasa (LPL, E.C. 3.1.1.34) es una glucoproteína sintetizada por diferentes tipos celulares, principalmente en adipocitos, células musculares y marcófagos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Lipoproteína lipasa (LPL, E.C. 3.1.1.34) es una glucoproteína sintetizada por diferentes tipos celulares, principalmente en adipocitos, células musculares y marcófagos.