86 resultados para LAGRANGIAN COHERENT STRUCTURES
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We study the Becchi-Rouet-Stora-Tyutin (BRST) structure of a self-interacting antisymmetric tensor gauge field, which has an on-shell null-vector gauge transformation. The Batalin-Vilkovisky covariant general formalism is briefly reviewed, and the issue of on-shell nilpotency of the BRST transformation is elucidated. We establish the connection between the covariant and the canonical BRST formalisms for our particular theory. Finally, we point out the similarities and differences with Wittens string field theory.
Resumo:
In order to study the connections between Lagrangian and Hamiltonian formalisms constructed from aperhaps singularhigher-order Lagrangian, some geometric structures are constructed. Intermediate spaces between those of Lagrangian and Hamiltonian formalisms, partial Ostrogradskiis transformations and unambiguous evolution operators connecting these spaces are intrinsically defined, and some of their properties studied. Equations of motion, constraints, and arbitrary functions of Lagrangian and Hamiltonian formalisms are thoroughly studied. In particular, all the Lagrangian constraints are obtained from the Hamiltonian ones. Once the gauge transformations are taken into account, the true number of degrees of freedom is obtained, both in the Lagrangian and Hamiltonian formalisms, and also in all the intermediate formalisms herein defined.
Resumo:
We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Qin [J. Eco. Th., 1996] recently showed that in a game of endogenous formation of cooperation structure, if the underlying TU-game is superadditive, then the full cooperation structure is stable. In this note, we characterize the class of games that ensure the stability of the full cooperation structure, and show that this class is much larger than that of superadditive TU-games.
Resumo:
This paper studies the stability of a finite local public goods economy in horizontal differentiation, where a jurisdiction's choice of the public good is given by an exogenous decision scheme. In this paper, we characterize the class of decision schemes that ensure the existence of an equilibrium with free mobility (that we call Tiebout equilibrium) for monotone distribution of players. This class contains all the decision schemes whose choice lies between the Rawlsian decision scheme and the median voter with mid-distance of the two median voters when there are ties. We show that for non-monotone distribution, there is no decision scheme that can ensure the stability of coalitions. In the last part of the paper, we prove the non-emptiness of the core of this coalition formation game
Resumo:
This paper shows the numerous problems of conventional economic analysis in the evaluation of climate change mitigation policies. The article points out the many limitations, omissions, and the arbitrariness that have characterized most evaluation models applied up until now. These shortcomings, in an almost overwhelming way, have biased the result towards the recommendation of a lower aggressiveness of emission mitigation policies. Consequently, this paper questions whether these results provide an appropriate answer to the problem. Finally, various points that an analysis coherent with sustainable development should take into account are presented.
Resumo:
In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorification-nerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a model structure as a category of algebras over a 2-monad. Some of these model structures coincide and the different points of view give us further results about cofibrant replacements and cofi brant objects. As part of this program we give explicit descriptions and discuss properties of free double categories, quotient double categories, colimits of double categories, and several nerves and categorifications.
Resumo:
In this paper, we study formal deformations of Poisson structures, especially for three families of Poisson varieties in dimensions two and three. For these families of Poisson structures, using an explicit basis of the second Poisson cohomology space, we solve the deformation equations at each step and obtain a large family of formal deformations for each Poisson structure which we consider. With the help of an explicit formula, we show that this family contains, modulo equivalence, all possible formal eformations. We show moreover that, when the Poisson structure is generic, all members of the family are non-equivalent.
Resumo:
We consider a population of agents distributed on the unit interval. Agents form jurisdictions in order to provide a public facility and share its costs equally. This creates an incentive to form large entities. Individuals also incur a transportation cost depending on their location and that of the facility which makes small jurisdictions advantageous. We consider a fairly general class of distributions of agents and generalize previous versions of this model by allowing for non-linear transportation costs. We show that, in general, jurisdictions are not necessarily homogeneous. However, they are if facilities are always intraterritory and transportation costs are superadditive. Superadditivity can be weakened to strictly increasing and strictly concave when agents are uniformly distributed. Keywords: Consecutiveness, stratification, local public goods, coalition formation, country formation. JEL Classification: C71 (Cooperative Games), D71 (Social Choice; Clubs; Committees; Associations), H73 (Interjurisdictional Differentials and Their Effects).
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We study the existence of solutions to general measure-minimization problems over topological classes that are stable under localized Lipschitz homotopy, including the standard Plateau problem without the need for restrictive assumptions such as orientability or even rectifiability of surfaces. In case of problems over an open and bounded domain we establish the existence of a “minimal candidate”, obtained as the limit for the local Hausdorff convergence of a minimizing sequence for which the measure is lower-semicontinuous. Although we do not give a way to control the topological constraint when taking limit yet— except for some examples of topological classes preserving local separation or for periodic two-dimensional sets — we prove that this candidate is an Almgren-minimal set. Thus, using regularity results such as Jean Taylor’s theorem, this could be a way to find solutions to the above minimization problems under a generic setup in arbitrary dimension and codimension.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"