14 resultados para KRAS GENE MUTATION

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) gene mutation have been postulated as a possible cause of recurrent miscarriage (RM). There is a wide variation in the prevalence of MTHFR polymorphisms and homocysteine (Hcy) plasma levels among populations around the world. The present study was undertaken to investigate the possible association between hyperhomocysteinemia and its causative genetic or acquired factors and RM in Catalonia, a Mediterranean region in Spain. Methods: Sixty consecutive patients with ≥ 3 unexplained RM and 30 healthy control women having at least one child but no previous miscarriage were included. Plasma Hcy levels, MTHFR gene mutation, red blood cell (RBC) folate and vitamin B12 serum levels were measured in all subjects. Results: No significant differences were observed neither in plasma Hcy levels, RBC folate and vitamin B12 serum levels nor in the prevalence of homozygous and heterozygous MTHFR gene mutation between the two groups studied. Conclusions: In the present study RM is not associated with hyperhomocysteinemia, and/or the MTHFR gene mutation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria. Methodology/Principal Findings: We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells. Conclusion/Significance: Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a Spanish family with autosomal-dominant non-neuropathic hereditary amyloidosis with a unique hepatic presentation and death from liver failure, usually by the sixth decade. The disease is caused by a previously unreported deletion/insertion mutation in exon 4 of the apolipoprotein AI (apoAI) gene encoding loss of residues 60-71 of normal mature apoAI and insertion at that position of two new residues, ValThr. Affected individuals are heterozygous for this mutation and have both normal apoAI and variant molecules bearing one extra positive charge, as predicted from the DNA sequence. The amyloid fibrils are composed exclusively of NH2-terminal fragments of the variant, ending mainly at positions corresponding to residues 83 and 92 in the mature wild-type sequence. Amyloid fibrils derived from the other three known amyloidogenic apoAI variants are also composed of similar NH2-terminal fragments. All known amyloidogenic apoAI variants carry one extra positive charge in this region, suggesting that it may be responsible for their enhanced amyloidogenicity. In addition to causing a new phenotype, this is the first deletion mutation to be described in association with hereditary amyloidosis and it significantly extends the value of the apoAI model for investigation of molecular mechanisms of amyloid fibrillogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a Spanish family with autosomal-dominant non-neuropathic hereditary amyloidosis with a unique hepatic presentation and death from liver failure, usually by the sixth decade. The disease is caused by a previously unreported deletion/insertion mutation in exon 4 of the apolipoprotein AI (apoAI) gene encoding loss of residues 60-71 of normal mature apoAI and insertion at that position of two new residues, ValThr. Affected individuals are heterozygous for this mutation and have both normal apoAI and variant molecules bearing one extra positive charge, as predicted from the DNA sequence. The amyloid fibrils are composed exclusively of NH2-terminal fragments of the variant, ending mainly at positions corresponding to residues 83 and 92 in the mature wild-type sequence. Amyloid fibrils derived from the other three known amyloidogenic apoAI variants are also composed of similar NH2-terminal fragments. All known amyloidogenic apoAI variants carry one extra positive charge in this region, suggesting that it may be responsible for their enhanced amyloidogenicity. In addition to causing a new phenotype, this is the first deletion mutation to be described in association with hereditary amyloidosis and it significantly extends the value of the apoAI model for investigation of molecular mechanisms of amyloid fibrillogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results: In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes) in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases) as well as on existent approved drugs (DrugBank database) supports our selection of cancer-therapy candidates.Conclusions: Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic and functional data indicate that variation in the expression of the neurotrophin-3 receptor gene (NTRK3) may have an impact on neuronal plasticity, suggesting a role for NTRK3 in the pathophysiology of anxiety disorders. MicroRNA (miRNA) posttranscriptional gene regulators act by base-pairing to specific sequence sites, usually at the 3'UTR of the target mRNA. Variants at these sites might result in gene expression changes contributing to disease susceptibility. We investigated genetic variation in two different isoforms of NTRK3 as candidate susceptibility factors for anxiety by resequencing their 3'UTRs in patients with panic disorder (PD), obsessive-compulsive disorder (OCD), and in controls. We have found the C allele of rs28521337, located in a functional target site for miR-485-3p in the truncated isoform of NTRK3, to be significantly associated with the hoarding phenotype of OCD. We have also identified two new rare variants in the 3'UTR of NTRK3, ss102661458 and ss102661460, each present only in one chromosome of a patient with PD. The ss102661458 variant is located in a functional target site for miR-765, and the ss102661460 in functional target sites for two miRNAs, miR-509 and miR-128, the latter being a brain-enriched miRNA involved in neuronal differentiation and synaptic processing. Interestingly, these two variants significantly alter the miRNA-mediated regulation of NTRK3, resulting in recovery of gene expression. These data implicate miRNAs as key posttranscriptional regulators of NTRK3 and provide a framework for allele-specific miRNA regulation of NTRK3 in anxiety disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle-type carnitine palmitoyltransferase 1 (CPT1β) is considered to be the gene that controls fatty acid mitochondrial β-oxidation. A functional peroxisome proliferator-activated receptor (PPAR) responsive element (PPRE) and a myocite-specific (MEF2) site that binds MEF2A and MEF2C in the promoter of this gene had been previously identified. We investigated the roles of the PPRE and the MEF2 binding sites and the potential interaction between PPARα and MEF2C regulating the CPT1β gene promoter. Mutation analysis indicated that the MEF2 site contributed to the activation of the CPT1β promoter by PPAR in C2C12 cells. The reporter construct containing the PPRE and the MEF2C site was synergistically activated by co-expression of PPAR, retinoid X receptor (RXR) and MEF2C in non-muscle cells. Moreover, protein-binding assays demonstrated that MEF2C and PPAR specifically bound to one another in vitro. Also for the synergistic activation of the CPT1β gene promoter by MEF2C and PPARα-RXRα, a precise arrangement of its binding sites was essential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The arrangement of regulatory motifs in gene promoters, or promoterarchitecture, is the result of mutation and selection processes that have operated over manymillions of years. In mammals, tissue-specific transcriptional regulation is related to the presence ofspecific protein-interacting DNA motifs in gene promoters. However, little is known about therelative location and spacing of these motifs. To fill this gap, we have performed a systematic searchfor motifs that show significant bias at specific promoter locations in a large collection ofhousekeeping and tissue-specific genes.Results: We observe that promoters driving housekeeping gene expression are enriched inparticular motifs with strong positional bias, such as YY1, which are of little relevance in promotersdriving tissue-specific expression. We also identify a large number of motifs that show positionalbias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specificmotifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis,as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictionsfor 559 tissue-specific motifs in mouse gene promoters.Conclusion: The study shows that motif positional bias is an important feature of mammalianproximal promoters and that it affects both general and tissue-specific motifs. Motif positionalconstraints define very distinct promoter architectures depending on breadth of expression andtype of tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Congenital bilateral absence of the vas deferens (CBAVD) is a form of male infertility in which mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified. The molecular basis of CBAVD is not completely understood. Although patients with cystic fibrosis have mutations in both copies of the CFTR gene, most patients with CBAVD have mutations in only one copy of the gene. Methods: To investigate CBAVD at the molecular level, we have characterized the mutations in the CFTR gene in 102 patients with this condition. None had clinical manifestations of cystic fibrosis. We also analyzed a DNA variant (the 5T allele) in a noncoding region of CFTR that causes reduced levels of the normal CFTR protein. Parents of patients with cystic fibrosis, patients with types of infertility other than CBAVD, and normal subjects were studied as controls. Results: Nineteen of the 102 patients with CBAVD had mutations in both copies of the CFTR gene, and none of them had the 5T allele. Fifty-four patients had a mutation in one copy of CFTR, and 34 of them (63 percent) had the 5T allele in the other CFTR gene. In 29 patients no CFTR mutations were found, but 7 of them (24 percent) had the 5T allele. In contrast, the frequency of this allele in the general population was about 5 percent. Conclusions: Most patients with CBAVD have mutations in the CFTR gene. The combination of the 5T allele in one copy of the CFTR gene with a cystic fibrosis mutation in the other copy is the most common cause of CBAVD. The 5T allele mutation has a wide range of clinical presentations, occurring in patients with CBAVD or moderate forms of cystic fibrosis and in fertile men.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na₊ channel alpha subunit (Naᵥ1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Naᵥ1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Naᵥ1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from -52.0 ± 6.5 pA/pF, n=15 to 35.9 ± 3.4 pA/pF, n = 22, at -20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V½ =-32.0 ± 0.3 mV, n = 18, and -27.3 ± 0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.