5 resultados para Judgments, Declaratory
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.
Resumo:
El primer Dictamen s'elabora a petició del client AUNOSA, SL per donar resposta a la possibilitat que els actors acudeixen a instàncies superiors després d'haver obtingut dues sentències desestimatòries tant en Primera Instància com en Segona Instància en relació a l'acció de nul·litat del contracte de compravenda així com la resta de pretensions manifestades. El segon dictamen es fa a petició del Conseller Delegat de la mercantil Comercial Xop, S.L.Comercial Xop, SL,
Resumo:
Transcranial Magnetic Stimulation (TMS) is a technic wich allows Neuroscience researchers to disrupt or improve the normal brain activity in a strategic and focalized cortical areas. Our present work using TMS is focused on research the role of Anterior Cingolate Cortex (ACC) to discover its causal implications over autoreferencial judgments of own behaviour using healthy controls.If our hypothesis is confirmed and ACC has a keyrole in those autoreferential judgements; new research lines and stimulation techniques could strenghten to improve quality of life and feelings of overcoming to thousands of mental health patients and neurodegenerative.
Resumo:
If single case experimental designs are to be used to establish guidelines for evidence-based interventions in clinical and educational settings, numerical values that reflect treatment effect sizes are required. The present study compares four recently developed procedures for quantifying the magnitude of intervention effect using data with known characteristics. Monte Carlo methods were used to generate AB designs data with potential confounding variables (serial dependence, linear and curvilinear trend, and heteroscedasticity between phases) and two types of treatment effect (level and slope change). The results suggest that data features are important for choosing the appropriate procedure and, thus, inspecting the graphed data visually is a necessary initial stage. In the presence of serial dependence or a change in data variability, the Nonoverlap of All Pairs (NAP) and the Slope and Level Change (SLC) were the only techniques of the four examined that performed adequately. Introducing a data correction step in NAP renders it unaffected by linear trend, as is also the case for the Percentage of Nonoverlapping Corrected Data and SLC. The performance of these techniques indicates that professionals" judgments concerning treatment effectiveness can be readily complemented by both visual and statistical analyses. A flowchart to guide selection of techniques according to the data characteristics identified by visual inspection is provided.
Resumo:
The present study builds on a previous proposal for assigning probabilities to the outcomes computed using different primary indicators in single-case studies. These probabilities are obtained comparing the outcome to previously tabulated reference values and reflect the likelihood of the results in case there was no intervention effect. The current study explores how well different metrics are translated into p values in the context of simulation data. Furthermore, two published multiple baseline data sets are used to illustrate how well the probabilities could reflect the intervention effectiveness as assessed by the original authors. Finally, the importance of which primary indicator is used in each data set to be integrated is explored; two ways of combining probabilities are used: a weighted average and a binomial test. The results indicate that the translation into p values works well for the two nonoverlap procedures, with the results for the regression-based procedure diverging due to some undesirable features of its performance. These p values, both when taken individually and when combined, were well-aligned with the effectiveness for the real-life data. The results suggest that assigning probabilities can be useful for translating the primary measure into the same metric, using these probabilities as additional evidence on the importance of behavioral change, complementing visual analysis and professional's judgments.