3 resultados para Jolkkonen, Jari

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glibenclamide is neuroprotective against cerebral ischemia in rats. We studied whether glibenclamide enhances long-term brain repair and improves behavioral recovery after stroke. Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 90 minutes. A low dose of glibenclamide (total 0.6mg) was administered intravenously 6, 12, and 24 hours after reperfusion. We assessed behavioral outcome during a 30-day follow-up and animals were perfused for histological evaluation. In vitro specific binding of glibenclamide to microglia increased after pro-inflammatory stimuli. In vivo glibenclamide was associated with increased migration of doublecortin-positive cells in the striatum toward the ischemic lesion 72 hours after MCAO, and reactive microglia expressed sulfonylurea receptor 1 (SUR1) and Kir6.2 in the medial striatum. One month after MCAO, glibenclamide was also associated with increased number of NeuN-positive and 5-bromo-2-deoxyuridine-positive neurons in the cortex and hippocampus, and enhanced angiogenesis in the hippocampus. Consequently, glibenclamide-treated MCAO rats showed improved performance in the limb-placing test on postoperative days 22 to 29, and in the cylinder and water-maze test on postoperative day 29. Therefore, acute blockade of SUR1 by glibenclamide enhanced long-term brain repair in MCAO rats, which was associated with improved behavioral outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glibenclamide is neuroprotective against cerebral ischemia in rats. We studied whether glibenclamide enhances long-term brain repair and improves behavioral recovery after stroke. Adult male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 90 minutes. A low dose of glibenclamide (total 0.6mg) was administered intravenously 6, 12, and 24 hours after reperfusion. We assessed behavioral outcome during a 30-day follow-up and animals were perfused for histological evaluation. In vitro specific binding of glibenclamide to microglia increased after pro-inflammatory stimuli. In vivo glibenclamide was associated with increased migration of doublecortin-positive cells in the striatum toward the ischemic lesion 72 hours after MCAO, and reactive microglia expressed sulfonylurea receptor 1 (SUR1) and Kir6.2 in the medial striatum. One month after MCAO, glibenclamide was also associated with increased number of NeuN-positive and 5-bromo-2-deoxyuridine-positive neurons in the cortex and hippocampus, and enhanced angiogenesis in the hippocampus. Consequently, glibenclamide-treated MCAO rats showed improved performance in the limb-placing test on postoperative days 22 to 29, and in the cylinder and water-maze test on postoperative day 29. Therefore, acute blockade of SUR1 by glibenclamide enhanced long-term brain repair in MCAO rats, which was associated with improved behavioral outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis (TFG) the results of the comparison between different methods to obtain a recombinant protein, by orthologous and heterologous expression, are exposed. This study will help us to identify the best way to express and purify a recombinant protein that will be used for biotechnology applications. In the first part of the project the goal was to find the best expression and purification system to obtain the recombinant protein of interest. To achieve this objective, a system expression in bacteria and in yeast was designed. The DNA was cloned into two different expression vectors to create a fusion protein with two different tags, and the expression of the protein was induced by IPTG or glucose. Additionally, in yeast, two promoters where used to express the protein, the one corresponding to the same protein (orthologous expression), and the ENO2 promoter (heterologous expression). The protein of interest is a NAD-dependent enzyme so, in a second time, its specific activity was evaluated by coenzyme conversion. The results of the TFG suggest that, comparing the model organisms, bacteria are more efficient than yeast because the quantity of protein obtained is higher and better purified. Regarding yeast, comparing the two expression mechanisms that were designed, heterologous expression works much better than the orthologous expression, so in case that we want to use yeast as expression model for the protein of interest, ENO2 will be the best option. Finally, the enzymatic assays, done to compare the effectiveness of the different expression mechanisms respect to the protein activity, revealed that the protein purified in yeast had more activity in converting the NAD coenzyme.