49 resultados para Jet fluid
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We are interested in coupled microscopic/macroscopic models describing the evolution of particles dispersed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe the microscopic motion of the particles coupled to the Euler equations for a compressible fluid. We investigate dissipative quantities, equilibria and their stability properties and the role of external forces. We also study some asymptotic problems, their equilibria and stability and the derivation of macroscopic two-phase models.
Resumo:
We extend Jackson and Watts's (2002) result on the coincidence of S-stochastically stable and core stable networks from marriage problems to roommate problems. In particular, we show that the existence of a side-optimal core stable network, on which the proof of Jackson and Watts (2002) hinges, is not crucial for their result.
Resumo:
Report for the scientific sojourn at the James Cook University, Australia, between June to December 2007. Free convection in enclosed spaces is found widely in natural and industrial systems. It is a topic of primary interest because in many systems it provides the largest resistance to the heat transfer in comparison with other heat transfer modes. In such systems the convection is driven by a density gradient within the fluid, which, usually, is produced by a temperature difference between the fluid and surrounding walls. In the oil industry, the oil, which has High Prandtl, usually is stored and transported in large tanks at temperatures high enough to keep its viscosity and, thus the pumping requirements, to a reasonable level. A temperature difference between the fluid and the walls of the container may give rise to the unsteady buoyancy force and hence the unsteady natural convection. In the initial period of cooling the natural convection regime dominates over the conduction contribution. As the oil cools down it typically becomes more viscous and this increase of viscosity inhibits the convection. At this point the oil viscosity becomes very large and unloading of the tank becomes very difficult. For this reason it is of primary interest to be able to predict the cooling rate of the oil. The general objective of this work is to develop and validate a simulation tool able to predict the cooling rates of high Prandtl fluid considering the variable viscosity effects.
Resumo:
The work in this paper deals with the development of momentum and thermal boundary layers when a power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum and energy equations and an approximation technique which is a form of the Heat Balance Integral Method. The fluid properties are assumed to be independent of temperature, hence the momentum equation uncouples from the thermal problem. We first derive the similarity equations for the velocity and present exact solutions for the case where the power law index n = 2. The similarity solutions are used to validate the new approximation method. This new technique is then applied to the thermal boundary layer, where a similarity solution can only be obtained for the case n = 1.
Resumo:
The literature related to skew–normal distributions has grown rapidly in recent yearsbut at the moment few applications concern the description of natural phenomena withthis type of probability models, as well as the interpretation of their parameters. Theskew–normal distributions family represents an extension of the normal family to whicha parameter (λ) has been added to regulate the skewness. The development of this theoreticalfield has followed the general tendency in Statistics towards more flexible methodsto represent features of the data, as adequately as possible, and to reduce unrealisticassumptions as the normality that underlies most methods of univariate and multivariateanalysis. In this paper an investigation on the shape of the frequency distribution of thelogratio ln(Cl−/Na+) whose components are related to waters composition for 26 wells,has been performed. Samples have been collected around the active center of Vulcanoisland (Aeolian archipelago, southern Italy) from 1977 up to now at time intervals ofabout six months. Data of the logratio have been tentatively modeled by evaluating theperformance of the skew–normal model for each well. Values of the λ parameter havebeen compared by considering temperature and spatial position of the sampling points.Preliminary results indicate that changes in λ values can be related to the nature ofenvironmental processes affecting the data
Resumo:
There are two principal chemical concepts that are important for studying the naturalenvironment. The first one is thermodynamics, which describes whether a system is atequilibrium or can spontaneously change by chemical reactions. The second main conceptis how fast chemical reactions (kinetics or rate of chemical change) take place wheneverthey start. In this work we examine a natural system in which both thermodynamics andkinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 insuperficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system inwhich natural and antrophic effects both contribute to highly modify the chemical compositionof water. Thermodynamical modelling based on the reduction-oxidation reactionsinvolving the passage NH+4 -& NO−2 -& NO−3 in equilibrium conditions has allowed todetermine the Eh redox potential values able to characterise the state of each sample and,consequently, of the fluid environment from which it was drawn. Just as pH expressesthe concentration of H+ in solution, redox potential is used to express the tendency of anenvironment to receive or supply electrons. In this context, oxic environments, as thoseof river systems, are said to have a high redox potential because O2 is available as anelectron acceptor.Principles of thermodynamics and chemical kinetics allow to obtain a model that oftendoes not completely describe the reality of natural systems. Chemical reactions may indeedfail to achieve equilibrium because the products escape from the site of the rectionor because reactions involving the trasformation are very slow, so that non-equilibriumconditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understoodcatalytic effects or to surface effects, while variables as concentration (a largenumber of chemical species can coexist and interact concurrently), temperature and pressurecan have large gradients in natural systems. By taking into account this, data of 91water samples have been modelled by using statistical methodologies for compositionaldata. The application of log–contrast analysis has allowed to obtain statistical parametersto be correlated with the calculated Eh values. In this way, natural conditions in whichchemical equilibrium is hypothesised, as well as underlying fast reactions, are comparedwith those described by a stochastic approach
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
Cerebrospinal fluid Etravirine concentrations were measured in 12 asymptomatic HIV-infected patients. Median ETR concentration in plasma was 611.5 ng/mL (148-991) and median CSF ETR concentration was 7.24 ng/ml (3.5-17.9). In all cases Etravirine levels were above the IC50 range(0.39-2.4ng/ml) and CSF viral load was &40 copies/ml in all patients with undetectable plasma viral load. Our data suggest that ETR achieves concentrations several times above the IC50 range in CSF. All patients with undetectable plasma viral load were virologically suppressed in CSF while receiving an ETR-containing regimen. ETR may help in controlling HIV-1 in CNS.
Resumo:
Objective: The importance of hemodynamics in the etiopathogenesis of intracranial aneurysms (IAs) is widely accepted.Computational fluid dynamics (CFD) is being used increasingly for hemodynamic predictions. However, alogn with thecontinuing development and validation of these tools, it is imperative to collect the opinion of the clinicians. Methods: A workshopon CFD was conducted during the European Society of Minimally Invasive Neurological Therapy (ESMINT) Teaching Course,Lisbon, Portugal. 36 delegates, mostly clinicians, performed supervised CFD analysis for an IA, using the @neuFuse softwaredeveloped within the European project @neurIST. Feedback on the workshop was collected and analyzed. The performancewas assessed on a scale of 1 to 4 and, compared with experts’ performance. Results: Current dilemmas in the management ofunruptured IAs remained the most important motivating factor to attend the workshop and majority of participants showedinterest in participating in a multicentric trial. The participants achieved an average score of 2.52 (range 0–4) which was 63% (range 0–100%) of an expert user. Conclusions: Although participants showed a manifest interest in CFD, there was a clear lack ofawareness concerning the role of hemodynamics in the etiopathogenesis of IAs and the use of CFD in this context. More effortstherefore are required to enhance understanding of the clinicians in the subject.
Resumo:
The diagnosis of synovial amyloidosis is based upon synovial biopsy. Synovial fluid (SF) in seven patients with amyloid arthropathy associated with chronic renal failure undergoing haemodialysis were studied. The SF and synovial samples of 10 consecutive patients with seronegative mono- or oligoarthritis served as controls. Six of the seven patients with amyloid positive synovial biopsy specimens showed amyloid in their SF. No amyloid was found in the synovial tissue or fluid of the 10 patients in the control group, the sensitivity being 87.7%. The finding of amyloid in SF was highly reproducible, showing its presence in the same joint on several occasions. The deposits were Congophilia resistant to potassium permanganate pretreatment, and the immunohistochemical analysis proved that they contained beta 2 microglobulin. The high sensitivity and good reproducibility of the method shows that the finding of amyloid in SF is sufficient for the diagnosis of synovial amyloidosis. It is possible to perform immunohis
Resumo:
Here we discuss two consecutive MERLIN observations of the X-ray binary LS I +61◦303. The first observation shows a double-sided jet extending up to about 200 AU on both sides of a central source. The jet shows a bent S-shaped struct ure similar to the one displayed by the well-known precessing jet of SS 433. The precession suggested in the first MERLIN image becomes evident in the second one, showing a one-sided bent jet significantly rotated with respect to the jet of the day before. We conclude that the derived precession of the relativistic (β=0.6) jet explains puzzling previous VLBI results. Moreover , the fact that the precession is fast could be the explanation of the never understood short term (days) variability of the associated gamma-ray source 2CG 135 + 01 / 3EG J0241 + 6103.
Resumo:
We present Very Long Baseline Interferometry (VLBI) observations of the high mass X-ray binary LSI+61303, carried out with the European VLBI Network (EVN). Over the 11 hour observing run, performed 10 days after a radio outburst, the radio source showed a constant flux density, which allowed sensitive imaging of the emission distribution. The structure in the map shows a clear extension to the southeast. Comparing our data with previous VLBI observations we interpret the extension as a collimated radio jet as found in several other X-ray binaries. Assuming that the structure is the result of an expansion that started at the onset of the outburst, we derive an apparent expansion velocity of 0.003 c, which, in the context of Doppler boosting, corresponds to an intrinsic velocity of at least 0.4 c for an ejection close to the line of sight. From the apparent velocity in all available epochs we are able to establish variations in the ejection angle which imply a precessing accretion disk. Finally we point out that LSI+61303, like SS433 and Cygnus X-1, shows evidence for an emission region almost orthogonal to the relativistic jet.