14 resultados para Jas. B. Stafford and Brother
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: The understanding of whole genome sequences in higher eukaryotes depends to a large degree on the reliable definition of transcription units including exon/intron structures, translated open reading frames (ORFs) and flanking untranslated regions. The best currently available chicken transcript catalog is the Ensembl build based on the mappings of a relatively small number of full length cDNAs and ESTs to the genome as well as genome sequence derived in silico gene predictions.Results: We use Long Serial Analysis of Gene Expression (LongSAGE) in bursal lymphocytes and the DT40 cell line to verify the quality and completeness of the annotated transcripts. 53.6% of the more than 38,000 unique SAGE tags (unitags) match to full length bursal cDNAs, the Ensembl transcript build or the genome sequence. The majority of all matching unitags show single matches to the genome, but no matches to the genome derived Ensembl transcript build. Nevertheless, most of these tags map close to the 3' boundaries of annotated Ensembl transcripts.Conclusions: These results suggests that rather few genes are missing in the current Ensembl chicken transcript build, but that the 3' ends of many transcripts may not have been accurately predicted. The tags with no match in the transcript sequences can now be used to improve gene predictions, pinpoint the genomic location of entirely missed transcripts and optimize the accuracy of gene finder software.
Resumo:
The aim of this work is to optimize and validate methods for the multiresidue determination of series of families of antibiotics as quinolones, penicillins and cephalosporins included in European regulation in food samples using LC-MS/MS. Different extraction techniques and clean-up applied to antibiotics in meat were compared. The quality parameters were established according with EU guideline. The developed method was applied to 49 positive raw milk samples from animal medicated with different antibiotics; the 63% of the analyzed samples were found to be compliant. ___________________________________________________________________________________________
Resumo:
Cognitive impairment in schizophrenia and psychosis is ubiquitous and acknowledged as a core feature of clinical expression, pathophysiology, and prediction of functioning. However, assessment of cognitive functioning is excessively time-consuming in routine practice, and brief cognitive instruments specific to psychosis would be of value. Two screening tools have recently been created to address this issue, i.e., the Brief Cognitive Assessment Tool for Schizophrenia (B-CATS) and the Screen for Cognitive Impairment in Psychiatry (SCIP). The aim of this research was to examine the comparative validity of these two brief instruments in relation to a global cognitive score. 161 patients with psychosis (96 patients diagnosed with schizophrenia and 65 patients diagnosed with bipolar disorder) and 76 healthy control subjects were tested with both instruments to examine their concurrent validity relative to a more comprehensive neuropsychological assessment battery. Scores from the B-CATS and the SCIP were highly correlated in the three diagnostic groups, and both scales showed good to excellent concurrent validity relative to a Global Cognitive Composite Score (GCCS) derived from the more comprehensive examination. The SCIP-S showed better predictive value of global cognitive impairment than the B-CATS. Partial and semi-partial correlations showed slightly higher percentages of both shared and unique variance between the SCIP-S and the GCCS than between the B-CATS and the GCCS. Brief instruments for assessing cognition in schizophrenia and bipolar disorders, such as the SCIP-S and B-CATS, seem to be reliable and promising tools for use in routine clinical practice.
Resumo:
Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth–promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-κB activation, and blocking this activation by using a super-repressor IκBα or by carrying out experiments using cortical neurons from mice that lack the p65 NF-κB subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras–ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras–ERK pathway and NF-κB.
Resumo:
The influence of chemistry and soaking temperature (maximal temperature of the continuous annealing) on the final properties of non-oriented electrical steels has been studied. With this objective two different studies have been performed. First the Mn, Ni and Cr content of a low loss electrical steel composition has been modified. An intermediate content and a high content of each element has been added in order to study the influence of this components on the magnetic looses, grain size and texture. Secondly the influence of the soaking temperature on magnetic properties, grain size and oxidation in four grades of non-oriented electrical steels (Steel A, B, C and D) was studied.
Resumo:
Aquest treball es basa en l’estudi de dues malalties lisosòmiques: la malaltia de Niemann-Pick A/B (NPAB) i la malaltia de Niemann-Pick tipus C (NPC). En relació a la malaltia de NPAB, s’ha realitzat l’expressió in vitro d’algunes de les mutacions de canvi d’aminoà cid trobades en pacients espanyols per tal de detectar les activitats enzimà tiques residuals. Totes les mutacions presenten una activitat molt baixa, gairebé nul•la, excepte la p.L225P i la R608del que tenen un 11% i 20% d’activitat respectivament. Els resultats obtinguts són coherents amb la severitat del fenotip que presenten els pacients. D’altra banda, s’ha caracteritzat un al•lel amb una mutació que afecta a una posició poc conservada d’un donador de splicing i que produeix la generació de trà nscrits aberrants corresponents a trà nscrits minoritaris de SMPD1, prèviament descrits, que no codifiquen per proteïna funcional. Respecte a malaltia de NPC, s’ha realitzat una anà lisi molecular de pacients espanyols prèviament estudiats identificant, en la majoria dels casos, la segona mutació responsable de la patologia. S’ha descrit per primer cop per aquesta malaltia una gran deleció que inclou el gen NPC1 i altres gens flanquejants i s’ha estudiat l’efecte que tenen les mutacions de splicing trobades a nivell de RNA. Per una d’aquestes mutacions, c.1554-1009G&A, s’ha assajat amb èxit una estratègia terapèutica basada en la utilització d’oligonuclèotids antisentit. D’altra banda, s’està desenvolupant un model cel•lular neuronal de la malaltia de Niemann-Pick tipus C, basat en la utilització de RNAs d’interferència, sobre el qual es podran assajar possibles estratègies terapèutiques en un futur.
Resumo:
Patient-specific simulations of the hemodynamics in intracranial aneurysms can be constructed by using image-based vascular models and CFD techniques. This work evaluates the impact of the choice of imaging technique on these simulations
Resumo:
AbstractBACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult.PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell.CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases.AVAILABILITY: The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download
Resumo:
In this paper we describe a taxonomy of task demands which distinguishes between Task Complexity, Task Condition and Task Difficulty. We then describe three theoretical claims and predictions of the Cognition Hypothesis (Robinson 2001, 2003b, 2005a) concerning the effects of task complexity on: (a) language production; (b) interaction and uptake of information available in the input to tasks; and (c) individual differences-task interactions. Finally we summarize the findings of the empirical studies in this special issue which all address one or more of these predictions and point to some directions for continuing, future research into the effects of task complexity on learning and performance.
Resumo:
The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties.The research on MSCs has mainly focused on their effects onT cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.
Resumo:
Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd-thioneins or Cu-thioneins, according to the ecophysiological needs of each kind of organisms.
Resumo:
A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained $ B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.),B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.),B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd),B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL.
Resumo:
Międzyrzecz Fortified Front, were Natura 2000 site PLH080003 Nietoperek is situated, was built by the Germans in the 1930s and during the World War II. It is composed of above ground bunkers connected by underground tunnels of ca. 32 km total length. Nietoperek is the eighth largest bats hibernation site in EU. Monthly censuses were carried out from October to April during three consecutive winter seasons (2011/12 – 2013/14) in area covering ca. 30% of the undergrounds. The aims of the study were: (1) to describe changes in numbers of each species in the course of hibernation season, (2) to suggest deadlines for counting particular bat species to obtain maximal numbers and (3) to describe negative impact of tourism on hibernating bats. The results will be useful for restriction of winter tourism in Nietoperek. The total number of bats observed during the study was 37869 individuals of 9 species. Because of difficulties in distinguishing without handling M. mystacinus and M. brandtii were treated as one group. M. myotis constituted from 53% (first season) to 64% (last season) of all hibernating bats. The maximal numbers of individuals were observed in November (first two seasons) and in December (third season). M. daubentonii constituted from 27% (first season) to 21% (last season) and M. nattereri from 10% (first season) to 11% (second season) of all bats. During the three seasons the maximal numbers of M. daubentonii and M. nattereri were observed in November and December respectively. B. barbastellus and P. auritus constituted from 4% (first season) to 2% (last season) of the multi species colony. The maximal numbers of B. barbastellus were observed in January and P. auritus in January (first and second seasons) and in December (third season). Results indicated that the best period for counting maximal numbers of M. myotis and M. daubentonii is November, for M. nattereri is December and for B. barbastellus and P. auritus is January. The study undertaken in the part visited by tourists in winter (total length of 900 m) proved negative effect caused by human disturbance with 23% decline of total bat numbers.
Resumo:
We investigated the effect of benthic substratum type (sand and rocks) and nutrient supply (N and P) on biofilm structure and heterotrophic metabolism in a field experiment in a forested Mediterranean stream (Fuirosos). Rock and sand colonization and biofilm formation was intensively studied for 44 d at two stream reaches: control and experimental (continuous addition of phosphate, ammonia, and nitrate). Structural (C, N, and polysaccharide content and bacterial and chlorophyll density) and metabolic biofilm parameters (b-glucosidase, peptidase, and phosphatase enzyme activities) were analyzed throughout the colonization process. The epilithic biofilm (grown on rocks) had a higher peptidase activity at the impacted reach, together with a higher algal and bacterial biomass. The positive relationship between the peptidase activity per cell and the N content of the epilithic biofilm suggested that heterotrophic utilization of proteinaceous compounds from within the biofilm was occurring. In contrast, nutrient addition caused the epipsammic biofilm (grown on sand) to exhibit lower b-glucosidase and phosphatase activities, without a significant increase in bacterial and algal biomass. The differential response to nutrient addition was related to different structural characteristics within each biofilm. The epipsammic biofilm had a constant and high C:N ratio (22.7) throughout the colonization. The epilithic biofilm had a higher C:N ratio at the beginning of the colonization (43.2) and evolved toward a more complex structure (high polysaccharide content and low C:N ratio) during later stages. The epipsammic biofilm was a site for the accumulation and degradation of organic matter: polysaccharides and organic phosphorus compounds had higher degradation activities