16 resultados para Intramolecular Oxidoreductases

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the surprising result that ab initio calculations on benzene and other planar arenes at correlated MP2, MP3, configuration interaction with singles and doubles (CISD), and coupled cluster with singles and doubles levels of theory using standard Pople’s basis sets yield nonplanar minima has been reported. The planar optimized structures turn out to be transition states presenting one or more large imaginary frequencies, whereas single-determinant-based methods lead to the expected planar minima and no imaginary frequencies. It has been suggested that such anomalous behavior can be originated by two-electron basis set incompleteness error. In this work, we show that the reported pitfalls can be interpreted in terms of intramolecular basis set superposition error (BSSE) effects, mostly between the C–H moieties constituting the arenes. We have carried out counterpoise-corrected optimizations and frequency calculations at the Hartree–Fock, B3LYP, MP2, and CISD levels of theory with several basis sets for a number of arenes. In all cases, correcting for intramolecular BSSE fixes the anomalous behavior of the correlated methods, whereas no significant differences are observed in the single-determinant case. Consequently, all systems studied are planar at all levels of theory. The effect of different intramolecular fragment definitions and the particular case of charged species, namely, cyclopentadienyl and indenyl anions, respectively, are also discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a model for water with a tunable intramolecular interaction Js, using mean-field theory and off-lattice Monte Carlo simulations. For all Js>~0, the model displays a temperature of maximum density. For a finite intramolecular interaction Js>0, our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely preempted by inevitable freezing. For J=0, the liquid-liquid critical point disappears at T=0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present molecular dynamics simulations of a simple model for polymer melts with intramolecular barriers. We investigate structural relaxation as a function of the barrier strength. Dynamic correlators can be consistently analyzed within the framework of the mode coupling theory of the glass transition. Control parameters are tuned in order to induce a competition between general packing effects and polymer-specific intramolecular barriers as mechanisms for dynamic arrest. This competition yields unusually large values of the so-called mode coupling theory exponent parameter and rationalizes qualitatively different observations for simple bead-spring and realistic polymers. The systematic study of the effect of intramolecular barriers presented here also establishes a fundamental difference between the nature of the glass transition in polymers and in simple glass formers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energy and hardness profile for a series of inter and intramolecular conformational changes at several levels of calculation were computed. The hardness profiles were found to be calculated as the difference between the vertical ionization potential and electron affinity. The hardness profile shows the correct number of stationary points independently of the basis set and methodology used. It was found that the hardness profiles can be used to check the reliability of the energy profiles for those chemical system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase,SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutaredoxins are members of a superfamily of thiol disulfide oxidoreductases involved in maintaining the redox state of target proteins. In Saccharomyces cerevisiae, two glutaredoxins (Grx1 and Grx2) containing a cysteine pair at the active site had been characterized as protecting yeast cells against oxidative damage. In this work, another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) that differs from the first in containing a single cysteine residue at the putative active site is described. This trait is also characteristic for a number of glutaredoxins from bacteria to humans, with which the Grx3/4/5 group has extensive homology over two regions. Mutants lacking Grx5 are partially deficient in growth in rich and minimal media and also highly sensitive to oxidative damage caused by menadione and hydrogen peroxide. A significant increase in total protein carbonyl content is constitutively observed in grx5cells, and a number of specific proteins, including transketolase, appear to be highly oxidized in this mutant. The synthetic lethality of the grx5 and grx2 mutations on one hand and ofgrx5 with the grx3 grx4 combination on the other points to a complex functional relationship among yeast glutaredoxins, with Grx5 playing a specially important role in protection against oxidative stress both during ordinary growth conditions and after externally induced damage. Grx5-deficient mutants are also sensitive to osmotic stress, which indicates a relationship between the two types of stress in yeast cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Entecavir (BMS-200475) was synthesized from 4-trimethylsilyl-3-butyn-2-one and acrolein. The key features of its preparation are: (i) a stereoselective boron-aldol reaction to afford the acyclic carbon skeleton of the methylenecylopentane moiety; (ii) its cyclization by a Cp2TiCl-catalyzed intramolecular radical addition of an epoxide to an alkyne; and (iii) the coupling with a purine derivative by a Mitsunobu reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic peptide architectures can be easily synthesized from cysteine-containing peptides with appending maleimides, free or protected, through an intramolecular Michael-type reaction. After peptide assembly, the peptide can cyclize either during the trifluoroacetic acid treatment, if the maleimide is not protected, or upon deprotection of the maleimide. The combination of free and protected maleimide moieties and two orthogonally protected cysteines gives access to structurally different bicyclic peptides with isolated or fused cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Larnellarins are a group of marine natural products isolated from the prosobranch mollusc Lamellaria sp., the ascidian Didemnum sp., and the sponge Dendrilla Cactos. Several of them exhibit interesting biological activities. Natural as well as synthetic lamellarins should be excellent candidates for the development of new drugs due to their unique skeletal structure and their important biological activities especially as antitumor agents. Lamelarin O has been recently characterized as a topoisomerase 1-targeted anti tumor agent. A variety of synthetic approaches have been developed for this family of alkaloids. Herein we describe a new route to the synthesis of Lamellarin D, from a methyl 2-pyrrolecarboxylate. Transformation of the starting material into the scaffold, a substituted 5,6-dihydropyrrolo (2,l ­a)isoquinoline (5,6-DHPl), was afforded by N-alkylation followed by intramolecular Heck cyclization. From this scaffold the synthetic strategy is based on two sequential regioselective bromination!Suzuki cross-coupling reactions which permitted the introduction of differently substituted aryl groups on positions 1 and 2 followed by oxidation, deprotection, and lactonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping protein that is present in virtually all organisms, where it performs metabolic functions essential for survival. GAPDH plays an essential role in the process of energy production, and is also involved in numerous biological processes. GAPDH belongs to a subset of proteins called moonlighting proteins, in which different functions are associated with a single polypeptide chain. The multifunctionality of GAPDH has been described in pathogenic and probiotic microorganisms, in mammals and in plants. In this review, we summarize the moonlighting role of GAPDH in bacteria.