4 resultados para Interferon treatment
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Radioiodinated recombinant human interferon-gamma (IFN gamma) bound to human monocytes, U937, and HL60 cells in a specific, saturable, and reversible manner. At 4 degrees C, the different cell types bound 3,000-7,000 molecules of IFN gamma, and binding was of comparable affinity (Ka = 4-12 X 10(8) M-1). No change in the receptor was observed after monocytes differentiated to macrophages or when the cell lines were pharmacologically induced to differentiate. The functional relevance of the receptor was validated by the demonstration that receptor occupancy correlated with induction of Fc receptors on U937. Binding studies using U937 permeabilized with digitonin showed that only 46% of the total receptor pool was expressed at the cell surface. The receptor appears to be a protein, since treatment of U937 with trypsin or pronase reduced 125I-IFN gamma binding by 87 and 95%, respectively. At 37 degrees C, ligand was internalized, since 32% of the cell-associated IFN gamma became resistant to trypsin stripping. Monocytes degraded 125I-IFN gamma into trichloroacetic acid-soluble counts at 37 degrees C but not at 4 degrees C, at an approximate rate of 5,000 molecules/cell per h. The receptor was partially characterized by SDS-polyacrylamide gel electrophoresis analysis of purified U937 membranes that had been incubated with 125I-IFN gamma. After cross-linking, the receptor-ligand complex migrated as a broad band that displayed an Mr of 104,000 +/- 18,000 at the top and 84,000 +/- 6,000 at the bottom. These results thereby define and partially characterize the IFN gamma receptor of human mononuclear phagocytes.
Resumo:
Multiple Sclerosis is the most common non-traumatic cause of neurologicaldisability in young people. There is no cure yet, and until recently, few long-termtherapies existed. Interferon beta (IFNβ) was the first treatment, and remains the mostcommonly prescribed. One of the most significant problems of IFNβ therapy is theproduction of drug specific antibodies. Up to 45% of patients develop neutralizingantibodies (NAbs) to IFNβ products. The neutralizing antibody binds to the biologicalagent preventing its interaction with its receptor, inhibiting the biological action of theprotein, which abrogates the clinical efficacy of IFNβ treatment. Interferon-betamediates its response by binding to its high affinity cell surface receptor and initiatingthe JAK/STAT signalling cascade. In this project we have analyzed the IFNβ signalingpathway in macrophages when neutralizing antibodies are present. The response tothis pathway after IFNβ stimulation shows a transient oscillatory rhythm of STAT1phosphorylation, which varies as NAbs concentration increases. To improve ourunderstanding of that behavior, we extended an existing mathematical model based onnonlinear ordinary differential equations of JAK/STAT pathway by including IFN-NAbassociation and IFN-activation receptor. Combining our theoretical model withexperimental data we could study the role of neutralizing antibodies on the molecularresponse and determine its lifetime after cytokine stimulation.
Resumo:
About 85% of multiple sclerosis (MS) cases start as clinically isolated syndrome (CIS).When patients present with a CIS, clinicians face with many questions, most of themrelated with prognosis and treatment. Thereby, patients with CIS have been focus ofresearch. Several studies have demonstrated a relationship between positive IgM lipidspecific oligoclonal band pattern in CSF and higher lesion load on MRI brain scan, higher number of relapses and greater disability, even at the first stages of the disease. On the other hand, no studies have used this previous evidence to treat with more aggressive disease modifying therapy in initial stages of disease course to prevent the earlier axonal damage. The aim of this study is to assess the most effective approved treatment for MS and current therapy for CIS patients presenting high risk to develop CDMS and with biomarkers of poor prognosis. Among this group of patients any disease activity will eventually lead to disability. Therefore, the earlier the treatment is initiated, the more effective to prevent disability will be. It is considered that “time lost is brain lost” and since once damage is established, there is no therapy to be regained later on. In this phase III clinical trial, 172 patients will be randomized 1:1 to receive Interferon β-1b or natalizumab over 96 weeks. Time to develop clinical definitive multiple sclerosis (CDMS) will be included as primary endpoint. Other secondary endpoints will include clinical data, magnetic resonance imaging (MRI) measurements and quality of life tests
Resumo:
About 85% of multiple sclerosis (MS) cases start as clinically isolated syndrome (CIS).When patients present with a CIS, clinicians face with many questions, most of themrelated with prognosis and treatment. Thereby, patients with CIS have been focus ofresearch. Several studies have demonstrated a relationship between positive IgM lipidspecific oligoclonal band pattern in CSF and higher lesion load on MRI brain scan, higher number of relapses and greater disability, even at the first stages of the disease. On the other hand, no studies have used this previous evidence to treat with more aggressive disease modifying therapy in initial stages of disease course to prevent the earlier axonal damage. The aim of this study is to assess the most effective approved treatment for MS and current therapy for CIS patients presenting high risk to develop CDMS and with biomarkers of poor prognosis. Among this group of patients any disease activity will eventually lead to disability. Therefore, the earlier the treatment is initiated, the more effective to prevent disability will be. It is considered that “time lost is brain lost” and since once damage is established, there is no therapy to be regained later on. In this phase III clinical trial, 172 patients will be randomized 1:1 to receive Interferon β-1b or natalizumab over 96 weeks. Time to develop clinical definitive multiple sclerosis (CDMS) will be included as primary endpoint. Other secondary endpoints will include clinical data, magnetic resonance imaging (MRI) measurements and quality of life tests