13 resultados para Insect bites and stings
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We investigated the effects of five allyl esters, two aromatic (allyl cinnamate and allyl 2-furoate) and three aliphatic (allyl hexanoate, allyl heptanoate, and allyl octanoate) in established insect cell lines derived from different species and tissues. We studied embryonic cells of the fruit fly Drosophila melanogaster (S2) (Diptera) and the beet armyworm Spodoptera exigua (Se4) (Lepidoptera), fat body cells of the Colorado potato beetle Leptinotarsa decemlineata (CPB) (Coleoptera), ovarian cells of the silkmoth Bombyx mori (Bm5), and midgut cells of the spruce budworm Choristoneura fumiferana (CF203) (Lepidoptera). Cytotoxicity was determined with use of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and trypan blue. In addition, we tested the entomotoxic action of allyl cinnamate against the cotton leafworm Spodoptera littoralis .The median (50%) cytotoxic concentrations (EC50s) of the five allyl esters in the MTT bioassays ranged between 0.25 and 27 mM with significant differences among allyl esters (P = 0.0012), cell lines (P < 0.0001), and the allyl estercell line interaction (P < 0.0001). Allyl cinnamate was the most active product, and CF203 the most sensitive cell line. In the trypan blue bioassays, cytotoxicity was produced rapidly and followed the same trend observed in the MTT bioassay. In first instars of S. littoralis, allyl cinnamate killed all larvae at 0.25% in the diet after 1 day, while this happened in third instars after 5 days. The LC50 in first instars was 0.08%. In addition, larval weight gain was reduced (P < 0.05) after 1 day of feeding on diet with 0.05%. In conclusion, the data provide evidence of the significant but differential cytotoxicity among allyl esters in insect cells of different species and tissues. Midgut cells show high sensitivity, indicating the insect midgut as a primary target tissue. Allyl cinnamate caused rapid toxic effects in S. littoralis larvae at low concentrations, suggesting further potential for use in pest control.
Resumo:
Coastal wetlands are characterized by high biodiversity, which is one of the main criteria considered when establishing protection policies or when proposing adequate management actions. In this study, the crustacean and aquatic insect composition of the Empord`a wetlands is described. These two faunal groups contribute highly to the total biodiversity in these wetlands but are seldom considered when managing natural areas. A selection (84 sampling points) of all water body types present in the Empord`a wetlands were sampled monthly (surber and dip net with a 250 μm mesh). Sampling was carried out during 3 surveys (1991-92, 1996-97 and 1999-2000). A rich fauna of 125 crustacean and 295 aquatic insect taxa was identified. We characterized each water body type using the most abundant species and the relative species richness of the taxonomic groups. A classification of the water body types, according to similarity between inventories, groups the brackish and hyperhaline systems in one cluster and the various freshwater systems in another one. Among freshwater systems, lotic waters and freshwater wetlands have a high similarity, whereas rice fields and freshwater springs have a low similarity
Resumo:
The aim of this contract was to finalise in vitro rearing on artificial diets of entomophagous insects useful to control insect pests mainly in greenhouses through an analytical and rational approach. The work focuses on the development and optimisation of artificial diets for one coccinellid (Harmonia axyridis), two heteropteran predators (Orius laevigatus, Dicyphus tamaninii), and a braconid parasitoid of aphids (Aphidius ervi). The definition of the artificial diets was based on biochemical analyses of their natural food (aphids) or substitution food for the predators (Ephestia kuehniella eggs). Reliable quality control parameters of the entomophages produced were used in order to adjust dietary composition and formulation of the different diets tested.
Resumo:
The genetic diversity of three temperate fruit tree phytoplasmas ‘Candidatus Phytoplasma prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ has been established by multilocus sequence analysis. Among the four genetic loci used, the genes imp and aceF distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for imp ranged from 50 to 68% according to species. Percentage of substitution varied between 9 and 12% for aceF, whereas it was between 5 and 6% for pnp and secY. In the case of ‘Ca P. prunorum’ the three most prevalent aceF genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same aceF sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of ‘Ca. P. prunorum’, the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese ‘Ca. P. pyri’ isolates showed that they shared some alleles with ‘Ca. P. prunorum’, supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.
Resumo:
BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.
Resumo:
Background: Chemoreception is a widespread mechanism that is involved in critical biologic processes, including individual and social behavior. The insect peripheral olfactory system comprises three major multigene families: the olfactory receptor (Or), the gustatory receptor (Gr), and the odorant-binding protein (OBP) families. Members of the latter family establish the first contact with the odorants, and thus constitute the first step in the chemosensory transduction pathway.Results: Comparative analysis of the OBP family in 12 Drosophila genomes allowed the identification of 595 genes that encode putative functional and nonfunctional members in extant species, with 43 gene gains and 28 gene losses (15 deletions and 13 pseudogenization events). The evolution of this family shows tandem gene duplication events, progressive divergence in DNA and amino acid sequence, and prevalence of pseudogenization events in external branches of the phylogenetic tree. We observed that the OBP arrangement in clusters is maintained across the Drosophila species and that purifying selection governs the evolution of the family; nevertheless, OBP genes differ in their functional constraints levels. Finally, we detect that the OBP repertoire evolves more rapidly in the specialist lineages of the Drosophila melanogaster group (D. sechellia and D. erecta) than in their closest generalists.Conclusion: Overall, the evolution of the OBP multigene family is consistent with the birth-and-death model. We also found that members of this family exhibit different functional constraints, which is indicative of some functional divergence, and that they might be involved in some of the specialization processes that occurred through the diversification of the Drosophila genus.
Resumo:
The newsworthiness of an event is partly determined by how unusual it isand this paper investigates the business cycle implications of this fact. In particular, weanalyze the consequences of information structures in which some types of signals are morelikely to be observed after unusual events. Such signals may increase both uncertainty anddisagreement among agents and when embedded in a simple business cycle model, can helpus understand why we observe (i) occasional large changes in macro economic aggregatevariables without a correspondingly large change in underlying fundamentals (ii) persistentperiods of high macroeconomic volatility and (iii) a positive correlation between absolutechanges in macro variables and the cross-sectional dispersion of expectations as measuredby survey data. These results are consequences of optimal updating by agents when theavailability of some signals is positively correlated with tail-events. The model is estimatedby likelihood based methods using individual survey responses and a quarterly time seriesof total factor productivity along with standard aggregate time series. The estimated modelsuggests that there have been episodes in recent US history when the impact on outputof innovations to productivity of a given magnitude was more than eight times as largecompared to other times.
Resumo:
Coraebus undatus is the main insect pest of cork oak worldwide. The larvae tunnel in the cortical cambium filling the bark with galleries and causing the cork to break at harvest. The first objective of this study was to test the effect of purple traps in the attraction of C. undatus because this colour is attractive to other buprestid beetles. The second objective was to develop a diet in which field-collected larvae could be reared to adulthood. Pairs of purple and clear (control) sticky traps were placed in a cork oak forest in Girona, Spain in the summer of 2008
Resumo:
Studies were conducted in apple, Malus domestica Borkhausen and pear, Pyrus communis L. (Rosales: Rosaceae), orchards to evaluate the attractiveness of grey halobutyl septa loaded with 1 (L2) and 10 (Mega) mg of codlemone, 8E,10E-dodecadien-1-ol, 3 mg of pear ester, ethyl (E,Z)- 2,4-decadienoate (DA2313), and 3 mg of pear ester plus 3 mg of codlemone (Combo) to adult codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). All studies were conducted in orchards treated with pheromone mating disruption. All four lures were tested on diamond-shaped sticky traps placed in 60 plots of apple and 40 plots of pears in 2003/04, and in 62 plots of apples and 30 of pears in 2004-05. Combo lures attracted significantly more moths (males + females) than all the others in both years. Comparisons among flights showed significant differences mainly for flight 1 and 2, but not always for flight 3. Mega lures provided no significant improvement compared with L2 lures during both seasons regarding the total number of moths. Combo and DA2313 lures attracted fewer females than males during the whole season. For most sample dates, more virgin than mated females were attracted to Combo lures, except during the third flight, and the overall ratio was 60:40, although the difference was not statistically significant. We conclude that the Combo lures are better indicators of codling moth activity in pheromone treated orchards, regardless of pest population level, when compared with similar lures containing codlemone or pear ester alone.
Resumo:
Aeromonas hydrophila is the most common Aeromonas species causing infections in human and other animals such as amphibians, reptiles, fish and crustaceans. Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Several mutant strains of A. hydrophila AH-3 were initially used to study their virulence in two animal species, Pacifastacus leniusculus (crayfish) and Tenebrio molitor larvae (mealworm). The AH-3 strains used in this study have mutations in genes involving the synthesis of flagella, LPS structures, secretion systems, and some other factors, which have been reported to be involved in A. hydrophila pathogenicity. Our study shows that the LPS (O-antigen and external core) is the most determinant A. hydrophila AH-3 virulence factor in both animals. Furthermore, we studied the immune responses of these hosts to infection of virulent or non-virulent strains of A. hydrophila AH-3. The AH-3 wild type (WT) containing the complete LPS core is highly virulent and this bacterium strongly stimulated the prophenoloxidase activating system resulting in melanization in both crayfish and mealworm. In contrast, the ΔwaaE mutant which has LPS without O-antigen and external core was non-virulent and lost ability to stimulate this system and melanization in these two animals. The high phenoloxidase activity found in WT infected crayfish appears to result from a low expression of pacifastin, a prophenoloxidase activating enzyme inhibitor, and this gene expression was not changed in the ΔwaaE mutant infected animal and consequently phenoloxidase activity was not altered as compared to non-infected animals. Therefore we show that the virulence factors of A. hydrophila are the same regardless whether an insect or a crustacean is infected and the O-antigen and external core is essential for activation of the proPO system and as virulence factors for this bacterium.
Resumo:
Insects are the most diverse group of animals on the planet, comprising over 90% of all metazoan life forms, and have adapted to a wide diversity of ecosystems in nearly all environments. They have evolved highly sensitive chemical senses that are central to their interaction with their environment and to communication between individuals. Understanding the molecular bases of insect olfaction is therefore of great importance from both a basic and applied perspective. Odorant binding proteins (OBPs) are some of most abundant proteins found in insect olfactory organs, where they are the first component of the olfactory transduction cascade, carrying odorant molecules to the olfactory receptors. We carried out a search for OBPs in the genome of the parasitoid wasp Nasonia vitripennis and identified 90 sequences encoding putative OBPs. This is the largest OBP family so far reported in insects. We report unique features of the N. vitripennis OBPs, including the presence and evolutionary origin of a new subfamily of double-domain OBPs (consisting of two concatenated OBP domains), the loss of conserved cysteine residues and the expression of pseudogenes. This study also demonstrates the extremely dynamic evolution of the insect OBP family: (i) the number of different OBPs can vary greatly between species; (ii) the sequences are highly diverse, sometimes as a result of positive selection pressure with even the canonical cysteines being lost; (iii) new lineage specific domain arrangements can arise, such as the double domain OBP subfamily of wasps and mosquitoes.
Resumo:
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.
Resumo:
Background: Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to"odor on", but also to"odor off". This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results: We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVAinduced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions: Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction. Keywords: carboxylesterase, esterase 6, olfaction, pheromone, signal termination