17 resultados para Inertial forces
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The sameness between the inertial mass and the gravitational mass is an assumption and not a consequence of the equivalent principle is shown. In the context of the Sciama’s inertia theory, the sameness between the inertial mass and the gravitational mass is discussed and a certain condition which must be experimentally satisfied is given. The inertial force proposed by Sciama, in a simple case, is derived from the Assis’ inertia theory based in the introduction of a Weber type force. The origin of the inertial force is totally justified taking into account that the Weber force is, in fact, an approximation of a simple retarded potential, see [18, 19]. The way how the inertial forces are also derived from some solutions of the general relativistic equations is presented. We wonder if the theory of inertia of Assis is included in the framework of the General Relativity. In the context of the inertia developed in the present paper we establish the relation between the constant acceleration a0 , that appears in the classical Modified Newtonian Dynamics (M0ND) theory, with the Hubble constant H0 , i.e. a0 ≈ cH0 .
Resumo:
A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.
Resumo:
Pete Johnston fa un repàs del què poden representar els desenvolupaments recents en el camp de la formació electrònica per als professionals que es fan càrrec dels recursos d'informació requerits com a suport a l'ensenyament i l'aprenentatge.
Resumo:
En aquest treball, s’ha dissenyat un mòdul d’acondicionament a fi de millorar les mesures de conductivitat realitzades amb un AFM (Microscopi de Forces Atòmiques). L’equip actual disposa d’un preamplificador de baix soroll amb un guany de 10 10V/A. Donat que els corrents que es pretenen mesurar són extremadament petits (~pA), s’ha dissenyat un filtre per eliminar diferents fonts de soroll, com ara el soroll que introdueix la xarxa elèctrica a 50Hz. Es pretén reduir aquesta component freqüencial un factor mínim de 10 (20dB). També s’ha afegit un filtre passa baixos per eliminar els soroll que es troba fora de l’amplada de banda del preamplificador. S’ha introduït una etapa d’amplificació de guany variable: 1, 10 i 100 per augmentar la flexibilitat de l’equip i finalment també s’ha dissenyat una etapa per eliminar la tensió d’offset d’aquest amplificador. L’abast del treball anirà des del disseny fins la implementació final sobre una placa PCB.
Resumo:
Report for the scientific sojourn carried out at the Darmouth College, from august 2007 until february 2008. It has been very successful, from different viewpoints: scientific, philosophical, human. We have definitely advanced, during the past six months, towards the comprehension of the behaviour of the fluctuations of the quantum vacuum in the presence of boundaries, moving and non-moving, and also in situations where the topology of space-time changes: the dynamical Casimir effect, regularization problems, particle creation statistics, according to different BC, etc. We have solved some longstanding problems and got in this subject quite remarkable results (as we will explain in more detail below). We also pursued a general approach towards a viable modified f(R) gravity in both the Jordan and the Einstein frames (which are known to be mathematically equivalent, but physically not so). A class of exponential, realistic modified gravities has been introduced by us and investigated with care. Special focus was made on step-class models, most promising from the phenomenological viewpoint and which provide a natural way to classify all viable modified gravities. One- and two-steps models were considered, but the analysis is extensible to N-step models. Both inflation in the early universe and the onset of recent accelerated expansion arise in these models in a natural, unified way, what makes them very promising. Moreover, it is monstrated in our work that models in this category easily pass all local tests, including stability of spherical body solution, non-violation of Newton's law, and generation of a very heavy positive mass for the additional scalar degree of freedom.
Resumo:
Aquest treball descriu una unitat didàctica de Física per estudiants de 4rt d’ESO. Els següents conceptes son introduïts i practicats durant un total de nou sessions: massa i pes, diferents tipus de forces, representació vectorial de forces, i dinàmica. A més dels exercicis de classe estàndard, els alumnes són exposats a dos laboratoris virtuals diferents que els ajuden a visualitzar i explorar els conceptes esmentats. Els estudiants més motivats poden escollir fer exercicis addicionals d’una llista d’activitats lliures. La unitat inclou una descripció completa de totes les activitats proposades.
Resumo:
We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.
Resumo:
A class of exact solutions of Hele-Shaw flows without surface tension in a rotating cell is reported. We show that the interplay between injection and rotation modifies the scenario of formation of finite-time cusp singularities. For a subclass of solutions, we show that, for any given initial condition, there exists a critical rotation rate above which cusp formation is suppressed. We also find an exact sufficient condition to avoid cusps simultaneously for all initial conditions within the above subclass.
Resumo:
We describe the design, calibration, and performance of surface forces apparatus with the capability of illumination of the contact interface for spectroscopic investigation using optical techniques. The apparatus can be placed in the path of a Nd-YAG laser for studies of the linear response or the second harmonic and sum-frequency generation from a material confined between the two surfaces. In addition to the standard fringes of equal chromatic order technique, which we have digitized for accurate and fast analysis, the distance of separation can be measured with a fiber-optic interferometer during spectroscopic measurements (2 Å resolution and 10 ms response time). The sample approach is accomplished through application of a motor drive, piezoelectric actuator, or electromagnetic lever deflection for variable degrees of range, sensitivity, and response time. To demonstrate the operation of the instrument, the stepwise expulsion of discrete layers of octamethylcyclotetrasiloxane from the contact is shown. Lateral forces may also be studied by using piezoelectric bimorphs to induce and direct the motion of one surface.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Resumo:
We study the motion of an unbound particle under the influence of a random force modeled as Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint and marginal probability density functions and find the associated solutions. We analyze in detail anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and explore possible connections between dynamical exponents of the variance and the fractal dimension of the trajectories.
Resumo:
We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.