24 resultados para Induced 1-aminocyclopropane-1-carboxylate Synthase
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: The enzyme fatty acid synthase (FASN) is highly expressed in many human carcinomas and its inhibition is cytotoxic to human cancer cells. The use of FASN inhibitors has been limited until now by anorexia and weight loss, which is associated with the stimulation of fatty acid oxidation. Materials and Methods: The in vitro effect of (-)-epigallocatechin-3-gallate (EGCG) on fatty acid metabolism enzymes, on apoptosis and on cell signalling was evaluated. In vivo, the effect of EGCG on animal body weight was addressed. Results: EGCG inhibited FASN activity, induced apoptosis and caused a marked decrease of human epidermal growth factor receptor 2 (HER2), phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular (signal)-regulated kinase (ERK) 1/2 proteins, in breast cancer cells. EGCG did not induce a stimulatory effect on CPT-1 activity in vitro (84% of control), or on animal body weight in vivo (99% of control). Conclusion: EGCG is a FASN inhibitor with anticancer activity which does not exhibit cross-activation of fatty acid oxidation and does not induce weight loss, suggesting its potential use as an anticancer drug.
Resumo:
Lesioned axons do not regenerate in the adult mammalian central nervous system, owing to the overexpression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3 (GSK3) and ERK1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3 and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: i) cerebellar granule cells and ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3 inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Lastly these regenerative effects were corroborated in the lesioned EHP in NgR1 -/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
We prove that if f is a partially hyperbolic diffeomorphism on the compact manifold M with one dimensional center bundle, then the logarithm of the spectral radius of the map induced by f on the real homology groups of M is smaller or equal to the topological entropy of f. This is a particular case of the Shub's entropy conjecture, which claims that the same conclusion should be true for any C1 map on any compact manifold.
Resumo:
Mi proyecto de tesis se basaba en el estudio del papel de profilina 1 en la formación de lamelas, para ello generamos una proteína recombinante y transducible, con el objetivo de poder modificar los niveles endógenos de profilina. Objetivos: i-caracterización bioquímica los tres sitios de union conocidos de la proteína de transducción, el sitio de unión a fosfo-inocitoles (PIP), el de unión a actina (Ac) y el de unión a poli-prolinas (PLP). ii-estudio de la polimerización in-vitro de actina - PTD4-Profilina1 iii-estudio de las proteínas componentes de lamelas inducidas por PTD4-Profilina1. Plan de trabajo: i-Para comprobar la funcionalidad los 3 sitios de unión fueron necesarias las primeras 6 semanas, ya que en primer lugar había que expresar y purificar el peptido Srv2, necesario para el ensayo de PLP. En segundo lugar, se obtuvieron los datos de las concentraciones adecuadas de lípidos para el ensayo de fosfo-inocitoles y por ultimo, se purifico la actina necesaria para el ensayo de unión a actina. Una vez establecida la funcionalidad de la proteína, se procedió a: ii-el estudio de polimerización in-vitro, que llevo 2 semanas. Demostrando que in-vitro era capaz de inhibir la polimerización de una manera similar a la endógena. Una vez terminados estos ensayos, se procedio a: iii-la caracterización inmunohistoquímica de las proteínas componentes de la lamela que fue llevado a cabo en 4 semanas. Para ello se usaron anticuerpos contra: alfa-actinina, talina, vinculina, ENA/Vasp y paxillina. Conclusiones: i-las propiedades bioquímicas de la PTD4-Profilina1 son similares a las de la profilina endógena. ii-los estudios de polimerización indican que la polimerización se produce de manera similar a la endogena. iii-los ensayos de inmunohistoquímica sugieren que, talina esta ausente y que las demás están presentes aunque en menor concentración y con otra distribución comparadas con los controles.
Resumo:
El sarcoma de Ewing es el segundo tumor óseo infantil más frecuente y presenta una alta incidencia de enfermedad metastática. Este tipo de tumores presentan una traslocación génica característica que da origen a una proteína de fusión, normalmente EWS/FLI1. Esta proteína de fusión actúa como factor de transcripción aberrante regulando la expresión de diferentes genes implicados en la iniciación, mantenimiento y progresión del tumor. Nuestro grupo describió como uno de estos genes diana a la caveolina 1 (CAV1) describiendo además su papel determinante en el fenotipo maligno del sarcoma de Ewing, en la tumorigénesis y en la resistencia a apoptosis inducida por quimioterapia. Para investigar el papel concreto de CAV1 en el proceso metastático de este sarcoma, creamos un modelo de baja expresión de CAV1 en líneas celulares de sarcoma de Ewing y determinamos cambios en su capacidad migratoria, invasiva y metastática. En los ensayos in vitro hallamos una menor capacidad migratoria de las células knockdown de CAV1 y una reducción en la expresión de MMP9 y en la actividad de MMP2. La regulación de la actividad de MMP2 parece estar relacionada con la posible regulación que ejerce CAV1 en la función de MT1-MMP, proteína fundamental para la activación de MMP2. Por otro lado, en este estudio proponemos que CAV1 promueve la expresión de MMP9 tanto transcripcionalmente, regulando la vía de señalización ERK1/2, como a nivel post-transcripcional regulando la vía RSK1/rpS6. Además, en los ensayos de metástasis experimental in vivo las células knockdown de CAV1 presentaron una menor incidencia de metástasis pulmonar, hecho que correlacionó con una disminución en la expresión de SPARC, una proteína de adhesión importante en procesos metastáticos. En resumen, nuestros resultados evidencian la importancia de CAV1 en el proceso metastático del sarcoma de Ewing.
Resumo:
Repair of damaged tissue requires the coordinated action of inflammatory and tissue-specific cells to restore homeostasis, but the underlying regulatory mechanisms are poorly understood. In this paper, we report new roles for MKP-1 (mitogen-activated protein kinase [MAPK] phosphatase-1) in controlling macrophage phenotypic transitions necessary for appropriate muscle stem cell¿dependent tissue repair. By restricting p38 MAPK activation, MKP-1 allows the early pro- to antiinflammatory macrophage transition and the later progression into a macrophage exhaustion-like state characterized by cytokine silencing, thereby permitting resolution of inflammation as tissue fully recovers. p38 hyperactivation in macrophages lacking MKP-1 induced the expression of microRNA-21 (miR-21), which in turn reduced PTEN (phosphatase and tensin homologue) levels, thereby extending AKT activation. In the absence of MKP-1, p38-induced AKT activity anticipated the acquisition of the antiinflammatory gene program and final cytokine silencing in macrophages, resulting in impaired tissue healing. Such defects were reversed by temporally controlled p38 inhibition. Conversely, miR-21¿AKT interference altered homeostasis during tissue repair. This novel regulatory mechanism involving the appropriate balance of p38, MKP-1, miR-21, and AKT activities may have implications in chronic inflammatory degenerative diseases.
Resumo:
Planarians have been established as an ideal model organism for stem cell research and regeneration. Planarian regeneration and homeostasis require an exquisite balancing act between cell death and cell proliferation as new tissues are made (epimorphosis) and existing tissues remodeled (morphallaxis). Some of the genes and mechanisms that control cell proliferation and pattern formation are known. However, studies about cell death during remodeling are few and far between. We have studied the gene Gtdap-1, the planarian ortholog of human death-associated protein-1 or DAP-1. DAP-1 together with DAP-kinase has been identified as a positive mediator of programmed cell death induced by gamma-interferon in HeLa cells. We have found that the gene functions at the interface between autophagy and cell death in the remodeling of the organism that occurs during regeneration and starvation in sexual and asexual races of planarians. Our data suggest that autophagy of existing cells may be essential to fuel the continued proliferation and differentiation of stem cells by providing the necessary energy and building blocks to neoblasts.
Resumo:
Normalization of the increased vascular nitric oxide (NO) generation with low doses of NG-nitro-L-arginine methyl ester (L-NAME) corrects the hemodynamic abnormalities of cirrhotic rats with ascites. We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion. Rats with carbon tetrachloride-induced cirrhosis and ascites were investigated using balance studies. The cirrhotic rats were separated into two groups, one receiving 0.5 mg/kg per day of L-NAME (CIR-NAME) during 7 d, whereas the other group (CIR) was administrated the same volume of vehicle. Two other groups of rats were used as controls, one group treated with L-NAME and another group receiving the same volume of vehicle. Sodium and water excretion was measured on days 0 and 7. On day 8, blood samples were collected for electrolyte and hormone measurements, and aorta and mesenteric arteries were harvested for cGMP determination and nitric oxide synthase (NOS) immunoblotting. Aortic cGMP and eNOS protein expression in the aorta and mesenteric artery were increased in CIR as compared with CIR-NAME. Both cirrhotic groups had a similar decrease in sodium excretion on day 0 (0.7 versus 0.6 mmol per day, NS) and a positive sodium balance (+0.9 versus +1.2 mmol per day, NS). On day 7, CIR-NAME rats had an increase in sodium excretion as compared with the CIR rats (sodium excretion: 2.4 versus 0.7 mmol per day, P < 0.001) and a negative sodium balance (-0.5 versus +0.8 mmol per day, P < 0.001). The excretion of a water load was also increased after L-NAME administration (from 28+/-5% to 65+/-7, P < 0.05). Plasma renin activity, aldosterone and arginine vasopressin were also significantly decreased in the CIR-NAME, as compared with the CIR rats. The results thus indicate that normalization of aortic cGMP and eNOS protein expression in vascular tissue is associated with increased sodium and water excretion in cirrhotic rats with ascites.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
BACKGROUND A previous study showed that the glucocorticoid dexamethasone, at doses of 100 ¿g/kg and above, inhibited leucocyte adhesion to rat mesenteric postcapillary venules activated with interleukin 1ß (IL-1ß), as assessed by videomicroscopy. AIMS To identify whether the adhesion molecule, intercellular adhesion molecule 1 (ICAM-1), or the chemokine KC could be targeted by the steroid to mediate its antiadhesive effect. METHODS Rat mesenteries were treated with IL-1ß (20 ng intraperitoneally) and the extent of leucocyte adhesion measured at two and four hours using intravital microscopy. Rats were treated with dexamethasone, and passively immunised against ICAM-1 or KC. Endogenous expression of these two mediators was validated by immunohistochemistry, ELISA, and the injection of specific radiolabelled antibodies. RESULTS Dexamethasone greatly reduced IL-1ß induced leucocyte adhesion, endothelial expression of ICAM-1 in the postcapillary venule, and release of the mast cell derived chemokine KC. Injection of specific antibodies to the latter mediators was also extremely effective in downregulating (>80%) IL-1ß induced leucocyte adhesion. CONCLUSIONS Induction by IL-1ß of endogenous ICAM-1 and KC contributes to leucocyte adhesion to inflamed mesenteric vessels. Without excluding other possible mediators, these data clearly show that dexamethasone interferes with ICAM-1 expression and KC release from mast cells, resulting in suppression of leucocyte accumulation in the bowel wall, which is a prominent feature of several gastrointestinal pathologies.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
The main difficulty in the successful treatment of metastatic melanoma is that this type of cancer is known to be resistant to chemotherapy. Chemotherapy remains the treatment of choice, and dacarbazine (DTIC) is the best standard treatment. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and antimetastatic properties. The objective of this study was to evaluate the signaling pathways involved in melanoma cell death after treatment with DM-1 compared to the standard agent for melanoma treatment, DTIC. Cell death was evaluated by flow cytometry for annexin V and iodide propide, cleaved caspase 8, and TNF-R1 expression. Hoechst 33342 staining was evaluated by fluorescent microscopy; lipid peroxidation and cell viability (MTT) were evaluated by colorimetric assays. The antiproliferative effects of the drugs were evaluated by flow cytometry for cyclin D1 and Ki67 expression. Mice bearing B16F10 melanoma were treated with DTIC, DM-1, or both therapies. DM-1 induced significant apoptosis as indicated by the presence of cleaved caspase 8 and an increase in TNF-R1 expression in melanoma cells. Furthermore, DM-1 had antiproliferative effects in this the same cell line. DTIC caused cell death primarily by necrosis, and a smaller melanoma cell population underwent apoptosis. DTIC induced oxidative stress and several physiological changes in normal melanocytes, whereas DM-1 did not significantly affect the normal cells. DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 monotherapy or in combination with DTIC, besides survival rate increase. Altogether, these data confirm DM-1 as a chemotherapeutic agent with effective tumor control properties and a lower incidence of side effects in normal cells compared to DTIC.
Resumo:
At present, there are no in vivo or in vitro methods developed which has been adopted by regulatory authorities to assess photosensitization induced by chemicals. Recently, we have proposed the use of THP-1 cells and IL-8 release to identify the potential of chemicals to induce skin sensitization. Based on the assumption that sensitization and photosensitization share common mechanisms, the aim of this work was to explore the THP-1 model as an in vitro model to identify photoallergenic chemicals. THP-1 cells were exposed to 7 photoallergens and 3 photoirritants and irradiated with UVA light or kept in dark. Non phototoxic allergens or irritants were also included as negative compounds. Following 24 h of incubation, cytotoxicity and IL-8 release were measured. At subtoxic concentrations, photoallergens produced a dose-related increase in IL-8 release after irradiation. Some photoirritants also produced a slight increase in IL-8 release. However, when the overall stimulation indexes of IL-8 were calculated for each chemical, 6 out of 7 photoallergens tested reached a stimulation index above 2, while the entire set of negative compounds had stimulation indexes below 2. Our data suggest that this assay may become a useful cell-based in vitro test for evaluating the photosensitizing potential of chemicals.