25 resultados para INTRINSIC VISCOSITY
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Report for the scientific sojourn at the James Cook University, Australia, between June to December 2007. Free convection in enclosed spaces is found widely in natural and industrial systems. It is a topic of primary interest because in many systems it provides the largest resistance to the heat transfer in comparison with other heat transfer modes. In such systems the convection is driven by a density gradient within the fluid, which, usually, is produced by a temperature difference between the fluid and surrounding walls. In the oil industry, the oil, which has High Prandtl, usually is stored and transported in large tanks at temperatures high enough to keep its viscosity and, thus the pumping requirements, to a reasonable level. A temperature difference between the fluid and the walls of the container may give rise to the unsteady buoyancy force and hence the unsteady natural convection. In the initial period of cooling the natural convection regime dominates over the conduction contribution. As the oil cools down it typically becomes more viscous and this increase of viscosity inhibits the convection. At this point the oil viscosity becomes very large and unloading of the tank becomes very difficult. For this reason it is of primary interest to be able to predict the cooling rate of the oil. The general objective of this work is to develop and validate a simulation tool able to predict the cooling rates of high Prandtl fluid considering the variable viscosity effects.
Resumo:
Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.
Resumo:
The main result is a proof of the existence of a unique viscosity solution for Hamilton-Jacobi equation, where the hamiltonian is discontinuous with respect to variable, usually interpreted as the spatial one. Obtained generalized solution is continuous, but not necessarily differentiable.
Resumo:
A condition needed for testing nested hypotheses from a Bayesianviewpoint is that the prior for the alternative model concentratesmass around the small, or null, model. For testing independencein contingency tables, the intrinsic priors satisfy this requirement.Further, the degree of concentration of the priors is controlled bya discrete parameter m, the training sample size, which plays animportant role in the resulting answer regardless of the samplesize.In this paper we study robustness of the tests of independencein contingency tables with respect to the intrinsic priors withdifferent degree of concentration around the null, and comparewith other “robust” results by Good and Crook. Consistency ofthe intrinsic Bayesian tests is established.We also discuss conditioning issues and sampling schemes,and argue that conditioning should be on either one margin orthe table total, but not on both margins.Examples using real are simulated data are given
Resumo:
Stone groundwood (SGW) is a fibrous matter commonly prepared in a high yield process, and mainly used for papermaking applications. In this work, the use of SGW fibers is explored as reinforcing element of polypropylene (PP) composites. Due to its chemical and superficial features, the use of coupling agents is needed for a good adhesion and stress transfer across the fiber-matrix interface. The intrinsic strength of the reinforcement is a key parameter to predict the mechanical properties of the composite and to perform an interface analysis. The main objective of the present work was the determination of the intrinsic tensile strength of stone groundwood fibers. Coupled and non-coupled PP composites from stone groundwood fibers were prepared. The influence of the surface morphology and the quality at interface on the final properties of the composite was analyzed and compared to that of fiberglass PP composites. The intrinsic tensile properties of stone groundwood fibers, as well as the fiber orientation factor and the interfacial shear strength of the current composites were determined
Resumo:
When applying a Collaborative Learning Flow Pattern (CLFP) to structure sequences of activities in real contexts, one of the tasks is to organize groups of students according to the constraints imposed by the pattern. Sometimes,unexpected events occurring at runtime force this pre-defined distribution to be changed. In such situations, an adjustment of the group structures to be adapted to the new context is needed. If the collaborative pattern is complex, this group redefinitionmight be difficult and time consuming to be carried out in real time. In this context, technology can help on notifying the teacher which incompatibilitiesbetween the actual context and the constraints imposed by the pattern. This chapter presents a flexible solution for supporting teachers in the group organization profiting from the intrinsic constraints defined by a CLFPs codified in IMS Learning Design. A prototype of a web-based tool for the TAPPS and Jigsaw CLFPs and the preliminary results of a controlled user study are alsopresented as a first step towards flexible technological systems to support grouping tasks in this context.
Resumo:
Why do people coordinate on the use of valueless pieces of paper as generally accepted money? A possible answer is that these objects have intrinsic properties that make them better candidates to be used as media of exchange. Another answer stresses the fact that unconvertible fiat money will not easily appear unless there is a centralized institution that favors its use. The main objective of the paper is to analyze these questions. In order to do this, we take a model of commodity money in which fiat money does not play any significant role and modify it to examine under which circumstances fiat money might come to circulate as medium of exchange. Some of the results obtained from the model differ in a rather substantial way from previous related literature.
Resumo:
Why do people coordinate on the use of valueless piecesof paper as generally accepted money? A possible answeris that these objects have intrinsic properties that make them better candidates to be used as media of exchange. Another answer stresses the fact that unconvertible fiat money will not easily appear unless there is a centralized institution that favors its use.The main objective of the paper is to analyze these questions. In order to do this, we take a model of commodity money in which fiat money does not play any significant role and modify it to examine under which circumstances fiat money might come to circulate as medium of exchange. Some of the results obtained from the model differ in a rather substantial way from previous related literature.
Resumo:
A detailed analysis of the photocapacitance signal at the near‐band and extrinsic energetic ranges in Schottky barriers obtained on horizontal Bridgman GaAs wafers, which were implanted with boron at different doses and annealed at several temperatures, has been carried out by using the optical isothermal transient spectroscopy, OITS. The optical cross sections have been determined as well as the quenching efficiency of the EL2 level which has been found to be independent of the annealing temperature. Moreover, the quenching relaxation presents two significant features: (i) a strong increase of the quenching efficiency from 1.35 eV on and (ii) a diminution of the quenching transient amplitude in relation with that shown by the fundamental EL2 level. In order to explain this behavior, different cases are discussed assuming the presence of several energy levels, the existence of an optical recuperation, or the association of the EL2 trap with two levels located, respectively, at Ev+0.45 eV and Ec−0.75 eV. The theoretical simulation, taking into account these two last cases, is in agreement with the experimental photocapacitance data at low temperature, as well as at room temperature where the EL2 filling phototransient shows an anomalous behavior. Moreover, unlike the previous data reported for the EL2 electron optical cross section, the values found using our experimental technique are in agreement with the behavior deduced from the theoretical calculation. The utilization of the OITS method has also allowed the determination of another level, whose faster optical contribution is often added to that of the EL2 level when the DLOS or standard photocapacitance is used.
Resumo:
A one-sided phase-field model is proposed to study the dynamics of unstable interfaces of Hele-Shaw flows in the high viscosity contrast regime. The corresponding macroscopic equations are obtained by means of an asymptotic expansion from the phase-field model. Numerical integrations of the phase-field model in a rectangular Hele-Shaw cell reproduce finger competition with the final evolution to a steady-state finger.
Resumo:
We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Itô vs Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Itô. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau-type model. A detailed discussion of a different numerical algorithm valid for both interpretations is also presented.
Resumo:
We study the fingering instability of a circular interface between two immiscible liquids in a radial Hele-Shaw cell. The cell rotates around its vertical symmetry axis, and the instability is driven by the density difference between the two fluids. This kind of driving allows studying the interfacial dynamics in the particularly interesting case of an interface separating two liquids of comparable viscosity. An accurate experimental study of the number of fingers emerging from the instability reveals a slight but systematic dependence of the linear dispersion relation on the gap spacing. We show that this result is related to a modification of the interface boundary condition which incorporates stresses originated from normal velocity gradients. The early nonlinear regime shows nearly no competition between the outgrowing fingers, characteristic of low viscosity contrast flows. We perform experiments in a wide range of experimental parameters, under conditions of mass conservation (no injection), and characterize the resulting patterns by data collapses of two characteristic lengths: the radius of gyration of the pattern and the interface stretching. Deep in the nonlinear regime, the fingers which grow radially outwards stretch and become gradually thinner, to a point that the fingers pinch and emit drops. We show that the amount of liquid emitted in the first generation of drops is a constant independent of the experimental parameters. Further on there is a sharp reduction of the amount of liquid centrifugated, punctuated by periods of no observable centrifugation.
Resumo:
In this article we present a phenomenological model which simulates very well the mag¿ netic relaxation behavior experimentally observed in small magnetic grains and single domain particles. In this model, the occurrence of quantum tunneling of magnetization below a certain temperature is taken into account. Experimental results for different materials are presented to illustrate the most important behavior deduced from our model