77 resultados para INTERACTION NETWORKS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Single nucleotide polymorphisms (SNPs) are the most frequent type of sequence variation between individuals, and represent a promising tool for finding genetic determinants of complex diseases and understanding the differences in drug response. In this regard, it is of particular interest to study the effect of non-synonymous SNPs in the context of biological networks such as cell signalling pathways. UniProt provides curated information about the functional and phenotypic effects of sequence variation, including SNPs, as well as on mutations of protein sequences. However, no strategy has been developed to integrate this information with biological networks, with the ultimate goal of studying the impact of the functional effect of SNPs in the structure and dynamics of biological networks. Results: First, we identified the different challenges posed by the integration of the phenotypic effect of sequence variants and mutations with biological networks. Second, we developed a strategy for the combination of data extracted from public resources, such as UniProt, NCBI dbSNP, Reactome and BioModels. We generated attribute files containing phenotypic and genotypic annotations to the nodes of biological networks, which can be imported into network visualization tools such as Cytoscape. These resources allow the mapping and visualization of mutations and natural variations of human proteins and their phenotypic effect on biological networks (e.g. signalling pathways, protein-protein interaction networks, dynamic models). Finally, an example on the use of the sequence variation data in the dynamics of a network model is presented. Conclusion: In this paper we present a general strategy for the integration of pathway and sequence variation data for visualization, analysis and modelling purposes, including the study of the functional impact of protein sequence variations on the dynamics of signalling pathways. This is of particular interest when the SNP or mutation is known to be associated to disease. We expect that this approach will help in the study of the functional impact of disease-associated SNPs on the behaviour of cell signalling pathways, which ultimately will lead to a better understanding of the mechanisms underlying complex diseases.
Resumo:
Background: The cooperative interaction between transcription factors has a decisive role in the control of the fate of the eukaryotic cell. Computational approaches for characterizing cooperative transcription factors in yeast, however, are based on different rationales and provide a low overlap between their results. Because the wealth of information contained in protein interaction networks and regulatory networks has proven highly effective in elucidating functional relationships between proteins, we compared different sets of cooperative transcription factor pairs (predicted by four different computational methods) within the frame of those networks. Results: Our results show that the overlap between the sets of cooperative transcription factors predicted by the different methods is low yet significant. Cooperative transcription factors predicted by all methods are closer and more clustered in the protein interaction network than expected by chance. On the other hand, members of a cooperative transcription factor pair neither seemed to regulate each other nor shared similar regulatory inputs, although they do regulate similar groups of target genes. Conclusion: Despite the different definitions of transcriptional cooperativity and the different computational approaches used to characterize cooperativity between transcription factors, the analysis of their roles in the framework of the protein interaction network and the regulatory network indicates a common denominator for the predictions under study. The knowledge of the shared topological properties of cooperative transcription factor pairs in both networks can be useful not only for designing better prediction methods but also for better understanding the complexities of transcriptional control in eukaryotes.
Resumo:
Background: Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize between genes putatively involved in cancer, usually based on further analyzing experimental data. Results: We implemented a systematic method using the PIANA software that predicts cancer involvement of genes by integrating heterogeneous datasets. Specifically, we produced lists of genes likely to be involved in cancer by relying on: (i) protein-protein interactions; (ii) differential expression data; and (iii) structural and functional properties of cancer genes. The integrative approach that combines multiple sources of data obtained positive predictive values ranging from 23% (on a list of 811 genes) to 73% (on a list of 22 genes), outperforming the use of any of the data sources alone. We analyze a list of 20 cancer gene predictions, finding that most of them have been recently linked to cancer in literature. Conclusion: Our approach to identifying and prioritizing candidate cancer genes can be used to produce lists of genes likely to be involved in cancer. Our results suggest that differential expression studies yielding high numbers of candidate cancer genes can be filtered using protein interaction networks.
Resumo:
Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C (13C/12C, δ13C) and N (15N/14N, δ15N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). δ13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in δ15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5 depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems.
Resumo:
Ecological network patterns are influenced by diverse processes that operate at different temporal rates. Here we analyzed whether the coupled effect of local abundance variation, seasonally phenotypic plastic responses, and species evolutionary adaptations might act in concert to shape network patterns. We studied the temporal variation in three interaction properties of bird species (number of interactions per species, interaction strength, and interaction asymmetry) in a temporal sequence of 28 plant frugivore interaction networks spanning two years in a Mediterranean shrubland community. Three main hypotheses dealing with the temporal variation of network properties were tested, examining the effects of abundance, switching behavior between alternative food resources, and morphological traits in determining consumer interaction patterns. Our results demonstrate that temporal variation in consumer interaction patterns is explained by short-term variation in resource and bird abundances and seasonal dietary switches between alternative resources (fleshy fruits and insects). Moreover, differences in beak morphology are associated with differences in switching behavior between resources, suggesting an important role of foraging adaptations in determining network patterns. We argue that beak shape adaptations might determine generalist and specialist feeding behaviors and thus the positions of consumer species within the network. Finally, we provide a preliminary framework to interpret phylogenetic signal in plant animal networks. Indeed, we show that the strength of the phylogenetic signal in networks depends on the relative importance of abundance, behavioral, and morphological variables. We show that these variables strongly differ in their phylogenetic signal. Consequently, we suggest that moderate and significant phylogenetic effects should be commonly observed in networks of species interactions. Read More: http://www.esajournals.org/doi/abs/10.1890/07-1939.1
Resumo:
This paper lays down some theoretical framework for further research to be made on the subject of how identity of young Slovenian and Catalan users is forming within the social networking website Facebook. The author pursues his interest based on observation of how communicationand thus interaction between users is changing and how this is reflected in everyday practices. In so doing he tries to identify the connections between the individual, society and technology, asthese are more and more interwoven, and we cannot think one without the other in thecontemporary globalised world.
Resumo:
The goal of this paper is twofold: first, we aim to assess the role played by inventors’ cross-regional mobility and networks of collaboration in fostering knowledge diffusion across regions and subsequent innovation. Second, we intend to evaluate the feasibility of using mobility and networks information to build cross-regional interaction matrices to be used within the spatial econometrics toolbox. To do so, we depart from a knowledge production function where regional innovation intensity is a function not only of the own regional innovation inputs but also external accessible R&D gained through interregional interactions. Differently from much of the previous literature, cross-section gravity models of mobility and networks are estimated to use the fitted values to build our ‘spatial’ weights matrices, which characterize the intensity of knowledge interactions across a panel of 269 regions covering most European countries over 6 years.
Resumo:
In this article we compare regression models obtained to predict PhD students’ academic performance in the universities of Girona (Spain) and Slovenia. Explanatory variables are characteristics of PhD student’s research group understood as an egocentered social network, background and attitudinal characteristics of the PhD students and some characteristics of the supervisors. Academic performance was measured by the weighted number of publications. Two web questionnaires were designed, one for PhD students and one for their supervisors and other research group members. Most of the variables were easily comparable across universities due to the careful translation procedure and pre-tests. When direct comparison was notpossible we created comparable indicators. We used a regression model in which the country was introduced as a dummy coded variable including all possible interaction effects. The optimal transformations of the main and interaction variables are discussed. Some differences between Slovenian and Girona universities emerge. Some variables like supervisor’s performance and motivation for autonomy prior to starting the PhD have the same positive effect on the PhD student’s performance in both countries. On the other hand, variables like too close supervision by the supervisor and having children have a negative influence in both countries. However, we find differences between countries when we observe the motivation for research prior to starting the PhD which increases performance in Slovenia but not in Girona. As regards network variables, frequency of supervisor advice increases performance in Slovenia and decreases it in Girona. The negative effect in Girona could be explained by the fact that additional contacts of the PhD student with his/her supervisor might indicate a higher workload in addition to or instead of a better advice about the dissertation. The number of external student’s advice relationships and social support mean contact intensity are not significant in Girona, but they have a negative effect in Slovenia. We might explain the negative effect of external advice relationships in Slovenia by saying that a lot of external advice may actually result from a lack of the more relevant internal advice
Resumo:
A large proportion of the death toll associated with malaria is a consequence of malaria infection during pregnancy, causing up to 200,000 infant deaths annually. We previously published the first extensive genetic association study of placental malaria infection, and here we extend this analysis considerably, investigating genetic variation in over 9,000 SNPs in more than 1,000 genes involved in immunity and inflammation for their involvement in susceptibility to placental malaria infection. We applied a new approach incorporating results from both single gene analysis as well as gene-gene interactionson a protein-protein interaction network. We found suggestive associations of variants in the gene KLRK1 in the single geneanalysis, as well as evidence for associations of multiple members of the IL-7/IL-7R signalling cascade in the combined analysis. To our knowledge, this is the first large-scale genetic study on placental malaria infection to date, opening the door for follow-up studies trying to elucidate the genetic basis of this neglected form of malaria.
Resumo:
Abstract Background: Many complex systems can be represented and analysed as networks. The recent availability of large-scale datasets, has made it possible to elucidate some of the organisational principles and rules that govern their function, robustness and evolution. However, one of the main limitations in using protein-protein interactions for function prediction is the availability of interaction data, especially for Mollicutes. If we could harness predicted interactions, such as those from a Protein-Protein Association Networks (PPAN), combining several protein-protein network function-inference methods with semantic similarity calculations, the use of protein-protein interactions for functional inference in this species would become more potentially useful. Results: In this work we show that using PPAN data combined with other approximations, such as functional module detection, orthology exploitation methods and Gene Ontology (GO)-based information measures helps to predict protein function in Mycoplasma genitalium. Conclusions: To our knowledge, the proposed method is the first that combines functional module detection among species, exploiting an orthology procedure and using information theory-based GO semantic similarity in PPAN of the Mycoplasma species. The results of an evaluation show a higher recall than previously reported methods that focused on only one organism network.
Resumo:
Interaction is a basic element in any educational process, and it is something that needs to be reconsidered in the light of technology. In order to examine the methodological changes that ICTs bring to teaching from an interaction perspective, a study was carried out at the University of Lleida to observe interaction processes in various face-to-face, blended learning and e-learning subjects. The methodological design was based on three data collection techniques: documentary analysis of subject curricula, lecturer and student questionnaires, and lecturer interviews. The data showed that, as the online component of subjects increased, the lecturers and students used more technological tools to communicate (e-mail, forums, chats, social networks, etc.). Furthermore, we found that the lecturers and students basically communicated for academic purposes. While they hardly ever communicated for personal reasons (guidance, support, etc.), they claimed that closer contact with a non-academic focus would be preferable. We also observed that the students’ work was more individual in e-learning subjects. Although there is still a considerable way to go in ICT-mediated lecturer-student interaction, both the lecturers and students recognise the potential of such technologies, even though they still do not use them as they feel they should.
Resumo:
Social interactions are a very important component in people"s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times" Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links" weights are a measure of the"influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
Resumo:
We are interested in coupled microscopic/macroscopic models describing the evolution of particles dispersed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe the microscopic motion of the particles coupled to the Euler equations for a compressible fluid. We investigate dissipative quantities, equilibria and their stability properties and the role of external forces. We also study some asymptotic problems, their equilibria and stability and the derivation of macroscopic two-phase models.
Resumo:
This paper is about the firm innovation process and the cooperation of the innovative firms with other firms and public institutions. A special attention is paid to the cooperation with universities. We use the Technological Innovation Survey (TIS) from the Instituto Nacional de Estadística (Spain) in order to obtain data for 4,159 innovative firms. Our results show that firm's cooperation activities are closely linked to the characteristics of the industry and the firm as well as to the origin of public funds for R&D activities. Key words: Innovation, universities, Spanish economy. JEL code: O31, I20, L60