48 resultados para INTEGRAL-EQUATION THEORY

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas¿low-density-liquid (LDL) critical point, and the other in a gas¿high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a KAM theory for some dissipative systems (geometrically, these are conformally symplectic systems, i.e. systems that transform a symplectic form into a multiple of itself). For systems with n degrees of freedom depending on n parameters we show that it is possible to find solutions with n-dimensional (Diophantine) frequencies by adjusting the parameters. We do not assume that the system is close to integrable, but we use an a-posteriori format. Our unknowns are a parameterization of the solution and a parameter. We show that if there is a sufficiently approximate solution of the invariance equation, which also satisfies some explicit non–degeneracy conditions, then there is a true solution nearby. We present results both in Sobolev norms and in analytic norms. The a–posteriori format has several consequences: A) smooth dependence on the parameters, including the singular limit of zero dissipation; B) estimates on the measure of parameters covered by quasi–periodic solutions; C) convergence of perturbative expansions in analytic systems; D) bootstrap of regularity (i.e., that all tori which are smooth enough are analytic if the map is analytic); E) a numerically efficient criterion for the break–down of the quasi–periodic solutions. The proof is based on an iterative quadratically convergent method and on suitable estimates on the (analytical and Sobolev) norms of the approximate solution. The iterative step takes advantage of some geometric identities, which give a very useful coordinate system in the neighborhood of invariant (or approximately invariant) tori. This system of coordinates has several other uses: A) it shows that for dissipative conformally symplectic systems the quasi–periodic solutions are attractors, B) it leads to efficient algorithms, which have been implemented elsewhere. Details of the proof are given mainly for maps, but we also explain the slight modifications needed for flows and we devote the appendix to present explicit algorithms for flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical wave-of-advance model of the neolithic transition (i.e., the shift from hunter-gatherer to agricultural economies) is based on Fisher's reaction-diffusion equation. Here we present an extension of Einstein's approach to Fickian diffusion, incorporating reaction terms. On this basis we show that second-order terms in the reaction-diffusion equation, which have been neglected up to now, are not in fact negligible but can lead to important corrections. The resulting time-delayed model agrees quite well with observations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an economy where the production technology has constantreturns to scale but where in the descentralized equilibrium thereare aggregate increasing returns to scale. The result follows froma positive contracting externality among firms. If a firms issurrounded by more firms, employees have more opportunitiesoutside their own firm. This improves employees' incentives toinvest in the presence of ex post renegotiation at the firm level,at not cost. Our leading result is that if a region is sparselypopulated or if the degree of development in the region is lowenough, there are multiple equilibria in the level of sectorialemployment. From the theoretical model we derive a non-linearfirst-order censored difference equation for sectoral employment.Our results are strongly consistent with the multiple equilibriahypothesis and the existence of a sectoral critical scale (belowwich the sector follows a delocation process). The scale of theregions' population and the degree of development reduce thecritical scale of the sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that, at high densities, fully variational solutions of solidlike types can be obtained from a density functional formalism originally designed for liquid 4He . Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased density functional (DF) methods to study highly nonhomogeneous systems, like 4He interacting with strongly attractive impurities and/or substrates, or the nucleation of the solid phase in the metastable liquid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method to solve the Lorentz-Dirac equation in the presence of an external electromagnetic field is presented. The validity of the approximation is discussed, and the method is applied to a particle in the presence of a constant magnetic field.