34 resultados para Hyperbolic haves
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We describe fractal tessellations of the complex plane that arise naturally from Cannon-Thurston maps associated to complete, hyperbolic, once-punctured-torus bundles. We determine the symmetry groups of these tessellations.
Resumo:
Let M be a compact hyperbolic 3-manifold with incompressible boundary. Consider a complete hyperbolic metric on int(M). To each geometrically finite end of int(M) are traditionnaly associated 3 different invariants : the hyperbolic metric associated to the conformal structure at infinity, the hyperbolic metric on the boundary of the convex core and the bending measured lamination of the convex core. In this note we show how invariants of different types can be realised in the different ends.
Resumo:
Boundary equilibrium bifurcations in piecewise smooth discontinuous systems are characterized by the collision of an equilibrium point with the discontinuity surface. Generically, these bifurcations are of codimension one, but there are scenarios where the phenomenon can be of higher codimension. Here, the possible collision of a non-hyperbolic equilibrium with the boundary in a two-parameter framework and the nonlinear phenomena associated with such collision are considered. By dealing with planar discontinuous (Filippov) systems, some of such phenomena are pointed out through specific representative cases. A methodology for obtaining the corresponding bi-parametric bifurcation sets is developed.
Resumo:
In this paper we investigate the role of horospheres in Integral Geometry and Differential Geometry. In particular we study envelopes of families of horocycles by means of “support maps”. We define invariant “linear combinations” of support maps or curves. Finally we obtain Gauss-Bonnet type formulas and Chern-Lashof type inequalities.
Resumo:
We prove that if f is a partially hyperbolic diffeomorphism on the compact manifold M with one dimensional center bundle, then the logarithm of the spectral radius of the map induced by f on the real homology groups of M is smaller or equal to the topological entropy of f. This is a particular case of the Shub's entropy conjecture, which claims that the same conclusion should be true for any C1 map on any compact manifold.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail
Resumo:
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently
Resumo:
A comparative performance analysis of four geolocation methods in terms of their theoretical root mean square positioning errors is provided. Comparison is established in two different ways: strict and average. In the strict type, methods are examined for a particular geometric configuration of base stations(BSs) with respect to mobile position, which determines a givennoise profile affecting the respective time-of-arrival (TOA) or timedifference-of-arrival (TDOA) estimates. In the average type, methodsare evaluated in terms of the expected covariance matrix ofthe position error over an ensemble of random geometries, so thatcomparison is geometry independent. Exact semianalytical equationsand associated lower bounds (depending solely on the noiseprofile) are obtained for the average covariance matrix of the positionerror in terms of the so-called information matrix specific toeach geolocation method. Statistical channel models inferred fromfield trials are used to define realistic prior probabilities for therandom geometries. A final evaluation provides extensive resultsrelating the expected position error to channel model parametersand the number of base stations.
Resumo:
Given a non-positively curved 2-complex with a circle-valued Morse function satisfying some extra combinatorial conditions, we describe how to locally isometrically embed this in a larger non- positively curved 2-complex with free-by-cyclic fundamental group. This embedding procedure is used to produce examples of CAT(0) free-by-cyclic groups that contain closed hyperbolic surface subgroups with polynomial distortion of arbitrary degree. We also produce examples of CAT(0) hyperbolic free-by-cyclic groups that contain closed hyperbolic surface subgroups that are exponentially distorted.
Resumo:
We show that a particular free-by-cyclic group has CAT(0) dimension equal to 2, but CAT(-1) dimension equal to 3. We also classify the minimal proper 2-dimensional CAT(0) actions of this group; they correspond, up to scaling, to a 1-parameter family of locally CAT(0) piecewise Euclidean metrics on a fixed presentation complex for the group. This information is used to produce an infinite family of 2-dimensional hyperbolic groups, which do not act properly by isometries on any proper CAT(0) metric space of dimension 2. This family includes a free-by-cyclic group with free kernel of rank 6.
Resumo:
In the asymptotic expansion of the hyperbolic specification of the colored Jones polynomial of torus knots, we identify different geometric contributions, in particular Chern-Simons invariant and Reidemeister torsion.